
Unmanned Maritime Autonomy Architecture (UMAA)
Support Operations (SO)

Interface Control Document (ICD)
(UMAA-SPEC-SOICD)

MDE Version 4.2.1 Commit 7c2b513

UMAA Spec Commit f2fa426

Version 3.0.1
25 February 2021

DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

1

UMAA Support Operations ICD

(UMAA-SPEC-SO-ICD)

Signature Page

Submitted by: Date Signed:
Mark Rothgeb
Unmanned Maritime Autonomy Architecture
Standards Board Chair

PMS 406
Approvals:

Date Signed:
CDR Jeremiah Anderson
PMS 406 Advanced Autonomous Capabilities,
Principal Assistant Program Manager

Date Signed:
CAPT Pete Small
Program Manager
PMS 406 Unmanned Maritime Systems,
PEO Unmanned and Small Combatants

2

Contents

1 Scope 7
1.1 Identification . 7
1.2 Overview . 7
1.3 Document Organization . 9

2 Referenced Documents 10

3 Introduction to Data Model, Services, and Interfaces 11
3.1 Data Model . 11
3.2 Definitions . 11
3.3 Data Distribution Service (DDSTM) . 11
3.4 Naming Conventions . 12
3.5 Namespace Conventions . 13
3.6 Cybersecurity . 13
3.7 GUID algorithm . 14
3.8 Large Sets . 14

4 Flow Control 15
4.1 Command / Response . 15

4.1.1 High-Level Flow . 16
4.1.2 Command Startup Sequence . 17

4.1.2.1 Service Provider Startup Sequence . 18
4.1.2.2 Service Consumer Startup Sequence . 19

4.1.3 Command Execution Sequences . 19
4.1.4 Command Start Sequence . 20

4.1.4.1 Command Execution . 20
4.1.4.2 Command Execution Success . 21
4.1.4.3 Command Execution Failure . 22
4.1.4.4 Command Canceled . 23

4.1.5 Command Cleanup . 24
4.1.6 Command Shutdown Sequence . 25

4.1.6.1 Service Provider Shutdown Sequence . 25
4.1.6.2 Service Consumer Shutdown Sequence . 26

4.2 Request / Reply . 27
4.2.1 Request/Reply without Query Data . 27

4.2.1.1 Service Provider Startup Sequence . 28
4.2.1.2 Service Consumer Startup Sequence . 28
4.2.1.3 Service Provider Shutdown . 28
4.2.1.4 Service Consumer Shutdown . 28

4.2.2 Request/Reply with Query Data . 29

5 Support Operations (SO) Services and Interfaces 30
5.1 Services and Interfaces . 30

5.1.1 HealthReporter . 30
5.1.1.1 reportHealthDetails . 31
5.1.1.2 reportHealthReporterCommand . 31
5.1.1.3 reportHealthReporterCommandStatus . 31
5.1.1.4 reportHealthSummary . 32
5.1.1.5 reportHourMeter . 32
5.1.1.6 reportReminder . 33
5.1.1.7 reportReminderSummary . 33
5.1.1.8 reportResetReminderCommand . 34
5.1.1.9 reportResetReminderCommandStatus . 34
5.1.1.10 setHealthReporter . 34
5.1.1.11 setResetReminder . 35

5.1.2 HealthSummaryControl . 35

3

5.1.2.1 reportHealthSummaryCommandStatus . 35
5.1.2.2 setHealthSummary . 36

5.1.3 HealthSummaryStatus . 36
5.1.3.1 reportHealthSummary . 36

5.1.4 ResourceAllocation . 37
5.1.4.1 reportResourceAllocation . 41
5.1.4.2 reportResourceAllocationCommand . 41
5.1.4.3 reportResourceAllocationCommandStatus . 42
5.1.4.4 reportResourceAllocationConfig . 42
5.1.4.5 reportResourceAllocationPriority . 42
5.1.4.6 reportResourceAllocationPriorityCommand . 43
5.1.4.7 reportResourceAllocationPriorityCommandStatus . 43
5.1.4.8 setResourceAllocation . 44
5.1.4.9 setResourceAllocationPriority . 44

5.2 Common Data Types . 46
5.2.1 UCSMDEInterfaceSet . 46
5.2.2 UMAACommand . 46
5.2.3 UMAAStatus . 46
5.2.4 UMAACommandStatusBase . 47
5.2.5 UMAACommandStatus . 47
5.2.6 DateTime . 47
5.2.7 BuiltInTestStatusType_All . 48
5.2.8 HealthDetailsStatusType . 48
5.2.9 Quaternion . 48
5.2.10 ResourceAllocationControlInfo . 49
5.2.11 ResourceAllocationControlSession . 49
5.2.12 ResourceAllocationDefinitionType . 49
5.2.13 ResourceAllocationPriorityInfo . 50

5.3 Enumerations . 51
5.3.1 BuiltInTestStatusEnumType . 51
5.3.2 CommandStatusReasonEnumType . 51
5.3.3 ErrorCodeEnumType . 52
5.3.4 ErrorConditionEnumType . 52
5.3.5 CommandStatusEnumType . 52

5.4 Type Definitions . 54

A Appendices 55
A.1 Acronyms . 55

List of Figures
1 UMAA Functional Organization . 7
2 UMAA Services and Interfaces Example . 8
3 Services and Interfaces Exposed on the UMAA Data Bus . 11
4 The state transitions of the commandStatus as commands are processed. Labels on the arrows represent valid

commandStatusReason values for each transition. 16
5 The sequence diagram for the high-level description of a command exeuction. 17
6 The sequence diagram for command startup. 18
7 The sequence diagram for command startup for Service Providers. 18
8 The sequence diagram for command startup for Service Consumers. 19
9 The sequence diagram for the start of a command execution. 20
10 The beginning sequence diagram for a command execution. 21
11 The sequence diagram for a command that completes successfully. 22
12 The sequence diagram for a command that fails due to Resource failure. 22
13 The sequence diagram for a command that times out before completing. 23
14 The sequence diagram for a command that is canceled by the Service Consumer before the Service Provider

is able to complete it. 24

4

15 The sequence diagram showing cleanup of the bus when a command has been completed and the Service
Consumer no longer wishes to maintain the commanded state. 25

16 The sequence diagram for command shutdown. 25
17 The sequence diagram for command shutdown for Service Providers. 26
18 The sequence diagram for command shutdown for Service Consumers. 26
19 The sequence diagram for a request/reply for report data that does not require any specific query data. . . . 27
20 The sequence diagram for initialization of a Service Provider to provide FunctionReportTypes. 28
21 The sequence diagram for initialization of a Service Consumer to request FunctionReportTypes. 28
22 The sequence diagram for shutdown of a Service Provider. 28
23 The sequence diagram for shutdown of a Service Consumer. 29
24 Sequence Diagram of Resource Consumer Requesting Control of a Resource 38
25 Sequence Diagram of Service Provider Verifying a Command using ResourceAllocation 39
26 Sequence Diagram of Nested Service Provider Verifying a Command using ResourceAllocation 40

List of Tables
3 Standards Documents . 10
4 Government Documents . 10
5 Service Requests and Associated Responses . 12
6 HealthReporter Operations . 30
7 HealthDetailsReportType Message Definition . 31
8 HealthReporterCommandReportType Message Definition . 31
9 HealthReporterCommandStatusType Message Definition . 32
10 HealthSummaryReportType Message Definition . 32
11 HourMeterStatusType Message Definition . 32
12 ReminderStatusType Message Definition . 33
13 ReminderSummaryStatusType Message Definition . 33
14 ResetReminderCommandReportType Message Definition . 34
15 ResetReminderCommandStatusType Message Definition . 34
16 HealthReporterCommandType Message Definition . 35
17 ResetReminderCommandType Message Definition . 35
18 HealthSummaryControl Operations . 35
19 HealthSummaryCommandStatusType Message Definition . 36
20 HealthSummaryCommandType Message Definition . 36
21 HealthSummaryStatus Operations . 36
22 HealthSummaryReportType Message Definition . 37
23 ResourceAllocation Operations . 40
24 ResourceAllocationReportType Message Definition . 41
25 ResourceAllocationCommandReportType Message Definition . 41
26 ResourceAllocationCommandStatusType Message Definition . 42
27 ResourceAllocationConfigReportType Message Definition . 42
28 ResourceAllocationPriorityReportType Message Definition . 43
29 ResourceAllocationPriorityCommandReportType Message Definition . 43
30 ResourceAllocationPriorityCommandStatusType Message Definition . 44
31 ResourceAllocationCommandType Message Definition . 44
32 ResourceAllocationPriorityCommandType Message Definition . 44
33 UCSMDEInterfaceSet Structure Definition . 46
34 UMAACommand Structure Definition . 46
35 UMAAStatus Structure Definition . 46
36 UMAACommandStatusBase Structure Definition . 47
37 UMAACommandStatus Structure Definition . 47
38 DateTime Structure Definition . 47
39 BuiltInTestStatusType_All Structure Definition . 48
40 HealthDetailsStatusType Structure Definition . 48
41 Quaternion Structure Definition . 48
42 ResourceAllocationControlInfo Structure Definition . 49
43 ResourceAllocationControlSession Structure Definition . 49

5

44 ResourceAllocationDefinitionType Structure Definition . 49
45 ResourceAllocationPriorityInfo Structure Definition . 50
46 BuiltInTestStatusEnumType Enumeration . 51
47 CommandStatusReasonEnumType Enumeration . 51
48 ErrorCodeEnumType Enumeration . 52
49 ErrorConditionEnumType Enumeration . 52
50 CommandStatusEnumType Enumeration . 53
51 Type Definitions . 54

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

1 Scope

1.1 Identification
This document defines a set of services and interfaces as part of the Unmanned Maritime Autonomy Architecture (UMAA).
The services and corresponding interfaces covered in this ICD encompass the functionality to provide support operations for
an Unmanned Maritime Vehicle (UMV) (surface or undersea). As such, it provides services used across functional boundaries
of UMAA ICDâ€™s such as logging, supporting startup and shutdown, providing emissions control (EMCON) services, and
resource control. This document is generated automatically from data models that define its services and interfaces as part
of the Unmanned Systems (UxS) Control Segment (UCS) Architecture as extended by UMAA to provide autonomy services
for UMVs.

To put each ICD in context of the UMAA Architecture Design Description (ADD), the UMAA functional decomposition
mapping to UMAA ICDs is shown in Figure 1.

Figure 1: UMAA Functional Organization

1.2 Overview
The fundamental purpose of UMAA is to promote the development of common, modular, and scalable software for UMV’s
that is independent of a particular autonomy implementation. Unmanned Maritime Systems (UMSs) consist of Command
and Control (C2), one or more UMVs, and support equipment and software (e.g. recovery system, Post Mission Analysis
applications). The scope of UMAA is focused on the autonomy that resides on-board the UMV. This includes the autonomy
for all classes of UMVs and must support varying levels of communication in mission (i.e., constant, intermittent, or none)
with its C2 System. To enable modular development and upgrade of the functional capabilities of the on-board autonomy,
UMAA defines eight high-level functions. These core functions include: Communications Operations, Engineering Operations,
Maneuver Operations, Mission Management, Processing Operations, Sensor and Effector Operations, Situational Awareness,
and Support Operations. In each of these areas, it is anticipated that new capabilities will be required to satisfy evolving
Navy missions over time. UMAA seeks to define standard interfaces for these functions so that individual programs can
leverage capabilities developed to these standard interfaces across programs that meet the standard interface specifications.
Individual programs may group services and interfaces into components in different ways to serve their particular vehicle’s
needs. However, the entire interface defined by UMAA will be required as defined in the ICDs for all services that are included
in a component. This requirement is what enables autonomy software to be ported between heterogeneous UMAA-compliant

Page 7

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

vehicles with their disparate vendor-defined vehicle control interfaces without recoding to a vehicle specific platform interface.

Support Operations provides capabilities for services that are shared across all of the other functional areas within UMAA.
This support includes the ancillary infrastructure services and interfaces required to operate a UMV. Standard interfaces
are defined for startup and shutdown, logging of time-stamped event and attribute data, operational mode control (e.g.
operational, simulation, maintenance, training), and resource control (i.e. managing which client is in control of a component).

Unlike the primary concerns of a vehicle system, such as propulsion control and sensor data processing, the support operations
are not typically seen in an external view of the system. Standardization of these services provides a consistent way to manage
internal modes and control hierarchies across platforms and programs.

Figure 2: UMAA Services and Interfaces Example

Page 8

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

1.3 Document Organization
This interface control document is organized as follows:

Section 1 – Scope: A brief purview of this document

Section 2 – Referenced Documents: A listing of associated of government and non-government documents and standards

Section 3 – Introduction to Data Model, Services, and Interfaces: A description of the common data model across all
services and interfaces

Section 4 – Flow Control: A description of different flow control patterns used throughout UMAA.

Section 5 – Support Operations (SO) Services and Interfaces: A description of specific services and interfaces for this
ICD

Page 9

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

2 Referenced Documents
The documents in the following table were used in the creation of the UMAA interface design documents. Not all references
may be applicable to this particular document.

Table 3: Standards Documents

Title Release Date
A Universally Unique IDentifier (UUID) URN Namespace July 2005
Data Distribution Service for Real-Time Systems Specification, Version 1.4 March 2015
Data Distribution Service Interoperability Wire Protocol (DDSI-RTPS), Version 2.3 April 2019
Object Management Group Interface Definition Language Specification (IDL) March 2018
Extensible and Dynamic Topic Types for DDS, Version 1.3 February 2020
UAS Control Segment (UCS) Architecture, Architecture Description, Version 2.4 27 March 2015
UCS Architecture, Conformance Specification, Version 2.2 27 September 2014
UCS-SPEC-MODEL v3.4 Enterprise Architect Model 27 March 2015
UCS Architecture, Architecture Technical Governance, Version 2.5 27 March 2015
System Modeling Language Specification, Version 1.5 May 2017
Unified Modeling Language Specification, Version 2.5.1 December 2017
Interface Definition Language (IDL), Version 4.2 March 2018
U.S. Department Of Homeland Security, United States Coast Guard
"Navigation Rules International-Inland" COMDTINST M16672.2D

March 1999

IEEE 1003.1-2017 - IEEE Standard for Information Technology–Portable Operating Sys-
tem Interface (POSIX(R)) Base Specifications, Issue 7

December 2017

Table 4: Government Documents

Title Release Date
Unmanned Maritime Autonomy Architecture (UMAA) Architecture Design Description
(ADD), Version 1.0

January 2019

MANUAL FOR THE SUBMISSION OF OCEANOGRAPHIC DATA COLLECTED BY
UNMANNED UNDERSEA VEHICLES (UUVs)

October 2018

Page 10

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

3 Introduction to Data Model, Services, and Interfaces

3.1 Data Model
A common data model is at the heart of UMAA. The common data model describes the entities that represent system state
data, the attributes of those entities and relationships between those entities. This is a "data at rest" view of system level
information. It also contains data classes that define types of messages that will be produced by components, a "data in
motion" view of system level information.

The common data model and coordinated service interfaces are described in a Unified Modeling Language (UMLTM) modeling
tool and are represented as UMLTM class diagrams. Interface definition source code for messages/topics and other interface
definition products and documentation will be automatically generated from the common data model to assure they are
consistent with the data model and to ensure delivered software matches its interface specification.

The data model is maintained as a maritime extension to the UCS Architecture and will be maintained under configuration
control by the UMAA Board. Section 5 content is automatically generated from this data model as are other automated
products such as IDL that are used for automated code generation.

3.2 Definitions
UMAA ICDs follow the UCS terminology definitions found in the UCS Architecture Description v2.4. The normative (re-
quired) implementation to satisfy compliance with a UMAA ICD is to provide service and interface specification compliance.
Components may group services and their required interfaces in any manner so long as every service meets its interface
specifications. Figure 3 shows a particular grouping of services into components. The interfaces are represented by the blue
and green lines and may represent 1 or more independent input and output interfaces for each service. The implementation of
the service into software components is left up to the individual system development. Compliance is satisfied at the individual
service level. Given this context, section 5 correspondingly defines services with their interfaces and not components.

Figure 3: Services and Interfaces Exposed on the UMAA Data Bus

Services may use other services within this ICD or in other UMAA defined ICDs in order to provide their capability.
Additionally, components for acquisition and development may span ICDs. An example of this would be a vehicle control
system on a UMV. The control of the vehicle would be found in the Maneuver Operations ICD. However, an Inertial
Navigation Unit (INU) that gives dynamic vehicle status is found in the Situational Awareness ICD. These are often organic
to a vehicle and in that case are provided together with the vehicle as a component.

3.3 Data Distribution Service (DDSTM)
The data bus supporting autonomy messaging as depicted in figure 3 is implemented via DDSTM. DDS is a middleware
protocol and API standard for data-centric connectivity from the Object Management Group (OMG). It integrates the
components of a system together, providing low-latency data connectivity, extreme reliability, and a scalable architecture. In
a distributed system, middleware is the software layer that lies between the operating system and applications. It enables
the various components of a system to more easily communicate and share data. It simplifies the development of distributed
systems by letting software developers focus on the specific purpose of their applications rather than the mechanics of passing
information between applications and systems. The DDS specification is fully described in free reference material on the
OMG website and there are both open source and commercially available implementations.

Page 11

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

3.4 Naming Conventions
UMAA services are modeled within the UCS Architecture under the Multi-Domain Extension (MDE). The UCS Architecture
uses SoaML concepts of participant, serviceInterface, service port and request port to describe the interfaces that make up a
service and show how the service is used. Each service defines the capability it provides as well as required interfaces. Each
interface consists of an operation that accepts a single message (A SoaML MessageType). In SoaML, a MessageType is a
defined as a unit of information exchanged between participant Request and Service ports via ServiceInterfaces. Instances of
a MessageType are passed as parameters in ServiceInterface operations. (UCSArchitecture,ArchitectureTechnicalGovernan
ce)

In order to promote commonality across service definitions, a common way of naming services and their set of operations
and messages has been adopted for defining services within UCS-MDE. The convention uses the Service Base Name (SBN)
and an optional Function Name (FN) to derive all service names and their associated operations and messages. As this is
meant to be a guide, services might not include all of the defined operations and messages and their names might not follow
the convention where a more appropriate name adds clarity.

Furthermore services in UMAA will not be broken up as indicated below when all parts of the service capabilities are required
for the service to be meaningful (such as ResourceAllocation).

Additionally, note that for UMAA not all operations defined in UCS-MDE result in a message being published to the DDS
bus, e.g., since DDS uses publish/subscribe, most query operations result in a subscription to a topic and do not actually
publish the associated request message. In the case of cancel commands, there is no associated implementation of the
cancel<SBN><FN>CommandStatus as it is just the intrinsic response of the DDS dispose function so it is essentially a
NOOP in implementation. The conventions used to define UCS-MDE services are as follows:

Service Name
<SBN>Config
<SBN>Control
<SBN>Specs
<SBN>Status

where the SBN should be descriptive of the task or information provided by the service.

Table 5: Service Requests and Associated Responses

Service Requests (Inputs) Service Responses (Outputs)
Config query<SBN><FN>Config report<SBN><FN>Config

Control
set<SBN><FN> report<SBN><FN>CommandStatus
query<SBN><FN>CommandAck report<SBN><FN>CommandAck
cancel<SBN><FN>Command report<SBN><FN>CancelCommandStatus
query<SBN><FN>ExecutionStatus report<SBN><FN>ExecutionStatus

Specs query<SBN><FN>Specs report<SBN><FN>Specs
Status query<SBN><FN> report<SBN><FN>

Service Requests (operation:message)
query<SBN><FN>Config:<SBN><FN>ConfigRequestType1

set<SBN><FN>:<SBN><FN>CommandType
query<SBN><FN>CommandAck:<SBN><FN>CommandAckRequestType1

cancel<SBN><FN>Command:<SBN><FN>CancelCommandType
query<SBN><FN>ExecutionStatus:<SBN><FN>ExecutionStatusRequestType1

query<SBN><FN>Specs:<SBN><FN>SpecsRequestType1

query<SBN><FN>:<SBN><FN>RequestType 1 2

1These message types are required for compatibility with the UCS model but are not used by the UMAA specification.
2At this time there are no Requests in the specification but when they have been added, this will be the message format.

Page 12

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Service Responses (operation:message)
report<SBN><FN>Config:<SBN><FN>ConfigReportType
report<SBN><FN>CommandStatus:<SBN><FN>CommandStatusType
report<SBN><FN>CommandAck:<SBN><FN>CommandAckReportType
report<SBN><FN>CancelCommandStatus:<SBN><FN>CancelCommandStatusType
report<SBN><FN>ExecutionStatus:<SBN><FN>ExecutionStatusReportType
report<SBN><FN>Specs:<SBN><FN>SpecsReportType
report<SBN><FN>:<SBN><FN>ReportType

where,

• Config (Configuration) Report – the setup of a resource for operation of a particular task. Attributes may be static or
variable. Examples include: maximum RPM allowed, operational sonar frequency range allowed, maximum allowable
radio transmit power.

• Command Status – the current state of a particular command (either control or configuration)

• Command – the ability to influence or direct the behavior of a resource during operation of a particular task. Attributes
are variable. Examples include a vehicleâ€™s speed, engine RPM, antenna raising/lowering, controlling a light or gong.

• Command Ack (Acknowledgement) Report – the command currently being executed.

• Cancel – the ability to cancel a particular command that has been issued.

• Execution Status Report – the status related to executing a particular command. Examples associated with a waypoint
command include cross track error, time to achieve, distance remaining.

• Specs (Specifications) Report – a detailed description of a resource and/or its capabilities and constraints. Attributes
are static. Examples include: maximum RPM of a motor, minimum frequency of a passive sonar sensor, length of the
UMV, cycle time of a radar.

• Report – the current information provided by a resource. Examples include a vehicle speed, rudder angle, current
waypoint, contact bearing.

3.5 Namespace Conventions
Each UMAA service and the messages under the service can be accessed through their appropriate UMAA namespace. The
namespace reflects the mapping of a specific service to its parent ICD, and the parent ICD’s mapping to the overall UMAA
Design Description. For example:

Access the Primitive Driver service under Maneuver Operations:
UMAA::MO::PrimitiveDriver

Access the Feature Service under Situational Awareness:
UMAA::SA::Feature

The UMAA model uses common data types that are re-used through the model to define service interface topics, interface
topics, and other common data topics. These data types are not intended to be directly utilized but for reference they can
be accessed in the same manner:

Access the common UMAA Report Message Fields:
UMAA::UMAARpt

Access the common UMAA Position2D (i.e., latitude and longitude) structure:
UMAA::Measurement::Position2D

3.6 Cybersecurity
The UMAA standard addressed in this ICD is independent from defining specific measures to achieve Cybersecurity compli-
ance. This UMAA ICD does not preclude the incorporation of security measures, nor does it imply or guarantee any level
of Cybersecurity within a system. Cybersecurity compliance will be performed on a program specific basis and compliance
testing is outside the scope of UMAA.

Page 13

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

3.7 GUID algorithm
The UMAA standard utilizes the Globally Unique IDentifier (GUID), conforming to the variant defined in RFC 4122 (variant
value of 2). Generators of GUIDs may generate GUIDs of any valid, RFC 4122-defined version that is appropriate for their
specific use case and requirements. (Reference: A Universally Unique IDentifier (UUID) URN Namespace)

3.8 Large Sets
Some reports under the UMAA standard utilize Large Sets, which are unordered sets of related data. The purpose of a Large
Set is to provide the ability to update one or more elements of the set without having to republish the entire set on the DDS
bus and consuming more resources as a set is appended or updated. In a given DDS topic, each element of the set is tracked
to its identifier through the use of the <service>SetID identifier (a key). Additionally, users will be able to trace an element
in a set by its source attribute (a NumericGUID) to the Service Provider that is generating the report with this set.

When elements of the set are updated, the timestamp of the metadata must be updated as well to signal a change in the set.
The element timestamp for the update must be later than the current metadata timestamp. Once the element is updated, the
timestamp of the metadata must be updated to a time equal to or later than the timestamp of the individual element update.
The set can be updated as a batch (multiple elements in a single "update cycle," as determined by the provider) provided
the metadata timestamp is updated to a time that is no earlier than the the most recent timestamp of all element updates
in the batch. This allows for a coarse synchronization: data elements with timestamps later than the current metadata
timestamp can be assumed to be part of an in-progress update cycle. Consumers can choose to immediately act on those
data individually or wait until the metadata timestamp is advanced beyond the element’s timestamp to signal the complete
update cycle has finished and consider the set as a whole.

Page 14

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

4 Flow Control

4.1 Command / Response
This section defines the flow of control for command/response over the DDS bus. A command/response is used to control
a specific service. While the exact names and processes will depend on the specific service and command being executed,
all command/responses in UMAA follow a similar pattern. A notional "Function" command FunctionCommand is used
in the following examples. As will be described in subsequent paragraphs, DDS publish/subscribe methods are used in
implementations to issue commands and responses.

To direct a FunctionCommand at a specific Service Provider, UMAA includes a destination GUID in all commands. A
Service Provider is required to respond to all FunctionCommands where the destination is the same as the Service Provider’s
ID. The Service Consumer will also create a unique sessionID for the command when commanded. The sessionID is used
to track the command execution as a key into other command-related messages. Service Provider and Service Consumer
terminology in the following sections is adopted from the OMG Service-oriented architecture Modeling Language (SoaML).

To initialize, a Service Provider (controllable resource) subscribes to the FunctionCommand DDS topic. At startup or right
before issuing a command, the Service Consumer (controlling resource) subscribes to the FunctionCommandStatus DDS
topic. Optionally, the Service Consumer may also subscribe to the FunctionCommandAckReport to monitor which command
is currently being executed, and the FunctionExecutionStatusReport, if defined for the Function service, that provides
reporting on function-specific data status.

Both Service Providers and Service Consumers are required to recover or clean up any previous persisted commands on the
bus during initialization.

To execute a command the Service Consumer publishes a FunctionCommandType to the DDS bus. The Service Provider will
be notified and will begin processing the request. During each phase of processing, the Service Provider will provide updates to
the Service Consumer via published updates to a related FunctionCommandStatus topic. Command responses are correlated
to their originating command via the sessionID. Command status updates are provided in the command responses via
the commandStatus field with additional details included in the commandStatusReason field. The Service Provider will also
publish the current executing command to the FunctionCommandAckReport topic. When defined for the Function service,
the Service Provider must also publish the FunctionExecutionStatusReport topic and update it as appropriate throughout
the execution of the command.

The required state transitions for the commandStatus field are shown in Figure 4. Every command must transition through
the states as defined. For example, it is a violation to transition from ISSUED to EXECUTING without transitioning through
COMMANDED. Even in the case where there is no logic executing between the ISSUED and EXECUTING states the Service Provider
is required to transition through COMMANDED. This ensures consistent behavior across different Service Providers, including
those that do require the COMMANDED state.

Page 15

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Figure 4: The state transitions of the commandStatus as commands are processed. Labels on the arrows represent valid
commandStatusReason values for each transition.

In the following sections, the sequence diagrams demonstrate different exchanges between a Service Consumer and Service
Provider. Within the diagrams, the dashed arrows represent implementation-specific communications that are outside of
UMAA’s scope. These sequence diagrams are just an example of one possible implementation. Other implementations may
have different communication patterns between the Service Provider and the Resource or be implemented completely within
the Service Provider process itself (no dependency on an external Resource). Likewise, the interactions between the User
and Service Consumer may follow similiar or different patterns. However, the UMAA-defined exchanges with the DDS bus
between the Service Consumer and Service Provider must happen in the order shown within the sequence diagrams.

4.1.1 High-Level Flow

The high-level flow of a command sequence is shown in Figure 5 and can be described as follows:

1. The Command Startup Sequence is performed

2. For each command to be executed

(a) The Command Start Sequence is performed

(b) The command is executed (sequence depends on the execution path, i.e., success, failure, or cancel)

(c) The Command Cleanup Sequence is performed

Page 16

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

3. The Command Shutdown Sequence is performed

The ref blocks will be defined in later sequence diagrams. Note that the duration of the system execution for any particular
FunctionCommandType is defined by the combination of the Service Provider(s) and Service Consumer(s) in the system and
my not be identical to the overall system execution duration. For example, providers may only be available to execute certain
commands during specific phases of a misison or when certain hardware is in specific configurations. This Command Startup
Sequence is not required to happend during a system startup phase. The only requirement is it must be completed by at
least one Service Provider and one Service Consumer before any FunctionCommandType commands can be fully executed.
Likewise, the Command Shutdown sequence may occur at anytime the FunctionCommandType will no longer be supported.
There is no requirement the Command Shutdown Sequence only be performed during a system shutdown phase.

Figure 5: The sequence diagram for the high-level description of a command exeuction.

4.1.2 Command Startup Sequence

As part of initialization both the Service Provider and Service Consumer are required to perform a startup sequence. This
startup prepares the Service Provider to execute commands and the Service Consumer to request commands and monitor
the progress of those requested commands.

The Service Provider and Service Consumer can initialize in any order. Commands will not be completely executed until
both have completed their initialization. The sequence diagram is shown in Figure 6.

Page 17

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Figure 6: The sequence diagram for command startup.

4.1.2.1 Service Provider Startup Sequence During startup the Service Provider is required to register as a publisher
to the FunctionCommandStatus, FunctionCommandAckReport, and, if defined for the Function service, the FunctionExecutionStatusReport
topics.

The Service Provider is also required to subscribe to the FunctionCommand topic to be notified when new commands are
published.

Finally, the Service Provider is required to handle any existing FunctionCommandType commands persisted on the DDS
bus with the Service Provider’s ID. For each command, if the Service Provider can and wishes to recover, it can continue
to execute the command. To obtain the last published state of the command, the Service Provider must subscribe to the
FunctionCommandStatusType. The Service Provider will continue following the normal status update sequence, picking up
from the last status on the bus. If the Service Provider cannot or choses not to continue processing the command, it must fail
the command by publishing a FunctionCommandStatus with a commandStatus of FAILED and a reason of SERVICE_FAILED.

The Service Provider Startup sequence is shown in Figure 7.

Figure 7: The sequence diagram for command startup for Service Providers.

Page 18

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

4.1.2.2 Service Consumer Startup Sequence During startup the Service Consumer is required to register as a pub-
lisher of the FunctionCommandType.

The Service Consumer is also required to subscribe to the FunctionCommandStatusType to monitor the execution of any
published commands. The Service Consumer can optionally register for the FunctionCommandAckReportType and, if defined
for the Function service, the FunctionExecutionStatusReportType if it desires to track additional status of the execution
of commands.

Finally, the Service Consumer is required to handle any existing FunctionCommandType commands persisted on the DDS bus
with this Service Consumer’s ID. To find existing FunctionCommandTypes on the bus, it must first subscribe to the topic. If
the Service Consumer can and wishes to recover, it can continue to monitor the execution of the command. If the Service
Consumer cannot or choses not to continue the execution of the command, it must cancel the command via the normal
command cancel method.

The Service Consumer Startup sequence is shown in Figure 8.

Figure 8: The sequence diagram for command startup for Service Consumers.

4.1.3 Command Execution Sequences

Once both the Service Provider and Service Consumer have performed the startup sequence, the system is ready be begin
issuing and executing commands.

Page 19

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

4.1.4 Command Start Sequence

The initial start sequence to execute a single command follows this pattern:

1. The User of the Service Consumer issues a request for a command to be executed.

2. The Service Consumer publishes the FunctionCommandType with a unique session ID, the source ID of the Service
Consumer and the destination ID of the desired Service Provider.

3. The Service Provider, upon notification of the new FunctionCommandType, publishes a new FunctionCommandStatusType
with the same session ID as the new FunctionCommandType and the status of ISSUED and reason of SUCCEEDED to notify
the Service Consumer it has received the new command.

The Command Start Sequence is shown in Figure 9. This pattern will be repeated each time a new command is requested.
After the Command Start Sequence, the sequence can take different paths depending on the actual execution of the command.
Some possible paths are detailed in the following sections, but they do not enumerate all of the possible execution paths.
Other paths (e.g., an objective failing) will follow a similiar pattern to other failures; all are required to follow the state
diagram shown in Figure 4 and eventually end with the Command Cleanup Sequence (as shown in Figure 15).

Figure 9: The sequence diagram for the start of a command execution.

4.1.4.1 Command Execution Once a Service Provider starts to process a command, the Command Execution sequence
is:

1. The Service Provider publishes a FunctionCommandAckReportType with matching session ID and parameters as the
FunctionCommandType it is starting to process.

2. The Service Provider performs any validation and negotiation with backing resources as necessary. Once the command
is ready to be executed the Service Provider publishes a FunctionCommandStatusType with a status COMMANDED and
reason SUCCEEDED to notify the Service Consumer that the command has been validated and commanded to start
execution.

3. Once the command has begun executing the Service Provider publishes a FunctionCommandStatusType with a status
EXECUTED and reason SUCCEEDED to notify the Service Consumer that the command has been validated and commanded
to start.

4. If the Function has a defined FunctionExecutionStatusReportType, the Service Provider must publish a new instance
with matching session ID as the associated FunctionCommandType. The FunctionExecutionStatusReportType must
be updated by the Service Provider throughout the execution as dictated by the defintions of the command-specific
attributes in the execution status report.

The command execution sequence is shown in Figure 10. This sequence holds until the command completes execution.

Page 20

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Figure 10: The beginning sequence diagram for a command execution.

The normal successful conclusion of a command being executed in some cases is initiated by the Service Consumer (an endless
GlobalVector command concluded by canceling it) and in other cases is initiated by the Service Provider (a GlobalWaypoint
commanded concluded by reaching the last waypoint). Unless otherwise explicitly stated, it is assumed the Service Provider
will be able to identify the successful conclusion of a command. In the cases where commands are defined to be indeterminate
the Service Consumer must cancel the command when the Service Consumer no longer desires the command to be executed.

4.1.4.2 Command Execution Success When the Service Provider determines a command has succesfully completed,
it must update the associated FunctionCommandStatusType with as status of COMPLETED and reason of SUCCEEDED. This
signals to the Service Consumer the command has completed successfully.

The Command Execution Success sequence is shown in Figure 11.

Page 21

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Figure 11: The sequence diagram for a command that completes successfully.

4.1.4.3 Command Execution Failure The command may fail to complete for any number of reasons including software
errors, hardware failures, or unfavorable environmental conditions. The Service Provider may also reject a command for a
number of reasons including inability to perform the task, malformed or out of range requests, or a command being interrupted
by a higher priority process. In all cases the Service Provider must publish a FunctionCommandStatusType with an identical
sessionID as the originating FunctionCommandType with a status of FAILED and the reason that reflects the cause of the
failure (VALIDATION_FAILED, SERVICE_FAILED, OBJECTIVE_FAILED, etc).

The following figures provide examples of cases where a command has failed.

In the first example, the backing Resource has failed and the Service Provider in unable to communicate with it. In this case
the Service Provider will report a FunctionCommandStatusType with a status of FAILED and a reason of RESOURCE_FAILED.
This is shown in Figure 12.

Figure 12: The sequence diagram for a command that fails due to Resource failure.

In the second example, the Resource takes too long to response, so the Service Provider cancels the request and reports a
FunctionCommandStatusType with a status of FAILED and a reason of TIMEOUT. This is shown in Figure 13.

Page 22

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Figure 13: The sequence diagram for a command that times out before completing.

Other failure conditions will follow a similar pattern: when the failure is recognized, the Service Provider will publish a
FunctionCommandStatusType with a status of FAILED and a reason that reflect the cause of the failure.

4.1.4.4 Command Canceled The Service Consumer may decide to cancel the command before processing is finished.
To signal a desire to cancel a command, the Service Consumer disposes the existing FunctionCommandType from the DDS
bus before the execution is complete. When notified of the command disposal, if the Service Provider is able to cancel
the command it should respond to the Service Consumer with a FunctionCommandStatusType with both the status and
reason as CANCELED and then dispose the FunctionCommandStatusType and FunctionCommandAckReportType and, if de-
fined for the Function service, the FunctionExecutionStatusReportType from the bus. This is shown in Figure 14. If
the command cannot be canceled the Service Provider can continue to update the command status until the execution is
completed, reporting FunctionCommandStatusType with a status of COMPLETED and a reason of SUCCEEDED, and then dis-
pose the FunctionCommandStatusType and FunctionCommandAckReportType and, if defined for the Function service, the
FunctionExecutionStatusReportType from the DDS bus.

There is no new unique specific status message response to a cancel command from the Service Provider. The cancel command
status can be inferred through the corresponding FunctionCommandStatusType status and reason updates.

Page 23

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Figure 14: The sequence diagram for a command that is canceled by the Service Consumer before the Service Provider is
able to complete it.

4.1.5 Command Cleanup

The Service Consumer and Service Provider are responsible for disposing corresponding data published to the DDS bus
when the command is no longer active. With the exception of a canceled command, the signal that a FunctionCommandType
can be disposed is when the FunctionCommandStatusType reports a terminal state (COMPLETED or FAILED)3. In turn, the
signal that a FunctionCommandStatusType, FunctionCommandAckReportType, and if defined for the Function service, the
FunctionExecutionStatusReportType can be disposed is when the corresponding FunctionCommandType has been disposed.
This is shown in Figure 15.

3While CANCELED is also a terminal state, CANCELED command cleanup is handled specially as part of the cancelling sequence and, as such, does
not need to be handled here.

Page 24

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Figure 15: The sequence diagram showing cleanup of the bus when a command has been completed and the Service
Consumer no longer wishes to maintain the commanded state.

4.1.6 Command Shutdown Sequence

As part of shutdown both the Service Provider and Service Consumer are required to perform a shutdown sequence. This
shutdown cleans up resources on the DDS bus and informs the system that the Service Provider and Service Consumer are
no longer available.

The Service Provider and Service Consumer can shutdown in any order. The sequence diagram is shown in Figure 16.

Figure 16: The sequence diagram for command shutdown.

4.1.6.1 Service Provider Shutdown Sequence During shutdown the Service Provider is required to fail any incomplete
requests and then unregisters as a publisher of the FunctionCommandStatusType, FunctionCommandAckReportType, and, if
defined for the Function service, the FunctionExecutionStatusReportType.

The Service Provider is also required to unsubscribe from the FunctionCommandType.

The Service Provider Shutdown sequence is shown in Figure 17.

Page 25

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Figure 17: The sequence diagram for command shutdown for Service Providers.

4.1.6.2 Service Consumer Shutdown Sequence During shutdown the Service Consumer is required to cancel any
incomplete requests and then unregister as a publisher of the FunctionCommandType.

The Service Consumer is also required to unsubscribe from the FunctionCommandStatusType, the FunctionCommandAckReportType
if subscribed, and the FunctionExecutionStatusReportType if defined for the Function service and subscribed.

The Service Consumer Shutdown sequence is shown in Figure 18.

Figure 18: The sequence diagram for command shutdown for Service Consumers.

Page 26

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

4.2 Request / Reply
This section defines the flow of control for request/reply over the DDS bus. A request/reply is used to obtain data or status
from a specific Service Provider.

A Service Provider is required to reply to all requests it receives. In the case of requests with no query data, this is
accomplished via a DDS subscribe. In the case of a request with associated query data, a message with the query data
must be published by the requester. To direct a request at a specific Service Provider or set of services UMAA defines a
destination GUID as part of requests.

In the following sections, the sequence diagrams demonstrate different exchanges between a Service Consumer and Service
Provider. Within the diagrams, the dashed arrows represent implementation-specific communications that are outside of
UMAA’s scope. Additionally, these sequence diagrams are just an example of one possible implementation. Other imple-
mentations may have different communication patterns between the Service Provider and the Resource or be implemented
completely within the Service Provider process itself (no external Resource). In all implementations, however, UMAA-defined
exchanges with the DDS bus between the Service Consumer and Service Provider must happen in the order shown within
the sequence diagrams.

4.2.1 Request/Reply without Query Data

In the case where there is no specific query data (i.e., the service is always just providing the current data to the bus) the
sequence of exchanges is show in Figure 19.

Figure 19: The sequence diagram for a request/reply for report data that does not require any specific query data.

Page 27

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

4.2.1.1 Service Provider Startup Sequence The Service Provider registers as a publisher of FunctionReportTypes
to be able to respond to requests. The Service Provider must also handle reports that exist on the bus from a previous instan-
tiation, either by providing an immediate update or, if the status is unrecoverable, disposing of the old FunctionReportType.
This is shown in Figure 20.

As FunctionReportType updates are required (either through event-driven changes or periodic updates), the Service Provider
publishes the updated data. The DDS bus will deliver the updates to the Service Consumer.

Figure 20: The sequence diagram for initialization of a Service Provider to provide FunctionReportTypes.

4.2.1.2 Service Consumer Startup Sequence The Service Consumer subscribes to the FunctionReportType to signal
an outstanding request for updates. This is shown in Figure 21.

Figure 21: The sequence diagram for initialization of a Service Consumer to request FunctionReportTypes.

4.2.1.3 Service Provider Shutdown To no longer provide FunctionReportTypes, the Service Provider disposes the
FunctionReportType and unregisters as a publisher of the data as shown in Figure 22.

Figure 22: The sequence diagram for shutdown of a Service Provider.

4.2.1.4 Service Consumer Shutdown To no longer request FunctionReportTypes, the Service Consumer unsubscribes
from FunctionReportType as shown in Figure 23.

Page 28

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Figure 23: The sequence diagram for shutdown of a Service Consumer.

4.2.2 Request/Reply with Query Data

Currently UMAA does not define any request/reply interactions with query data, but it is expected some will be defined.
When defined, this section will be expanded to describe how they must be used.

Page 29

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

5 Support Operations (SO) Services and Interfaces

5.1 Services and Interfaces
The interfaces in the following subsections describe how each UCS-UMAA topic is defined by listing the name, namespace,
and member attributes. The "name" corresponds with the message name of a given service interface. The "namespace"
defines the scope of the "name" where similar commands are grouped together. The "member attributes" are fields that can
be populated with differing data types, e.g. a generic "depth" attribute could be populated with a double data value. Note
that using a UCS-UMAA "Topic Name" requires using the fully-qualified namespace plus the topic name.

Each interface topic is referenced by a UMAA service and is defined as either an input or output interface.
Attributes ending in one or more asterisk(s) denote the following:
* = Key (annotated with @key in IDL file, vendors may use different notation to indicate a key field)
†= Optional (annotated with @optional in IDL file, vendors may use different notation to indicate an optional field)

Optional fields should be handled as described in the UMAA Compliance Specification.

Commands issued on the DDS bus must be treated as if they are immutable in UMAA and therefore if updated (treated
incorrectly as mutable), the resulting service actions are indeterminate and flow control protocols are no longer guaranteed.

Operations without DDS Topics

The following operations are all handled directly by DDS. They are marked in the operations tables with a ⊕.

query<...> - all query operations are used to retrieve the correlated report message. For UMAA, this operation is accomplished
through subscribing to the appropriate DDS topic.

cancel<...> - all cancel operations are used to nullify the current command. For UMAA, this operation is accomplished
through the DDS dispose action on the publisher.

report<...>CancelCommandStatus - all cancel reports are included here to show completeness of the MDE model mapping
to UMAA. For UMAA, this operation is not used.

Instead, the cancel status is inferred from the associated command status. If the cancel command is successful, the corre-
sponding command will fail with a command status and reason of CANCELED. If the corresponding command status reports
COMPLETED, then this cancel command has failed.

5.1.1 HealthReporter

The purpose of this service is to provide health details and summary.

Table 6: HealthReporter Operations

Service Requests (Inputs) Service Responses (Outputs)
setHealthReporter reportHealthReporterCommandStatus
queryHealthReporterCommand⊕ reportHealthReporterCommand
cancelHealthReporterCommand⊕ reportHealthReporterCancelCommandStatus⊕
setResetReminder reportResetReminderCommandStatus
queryResetReminderCommand⊕ reportResetReminderCommand
cancelResetReminderCommand⊕ reportResetReminderCancelCommandStatus⊕
queryHealthDetails⊕ reportHealthDetails
queryHealthSummary⊕ reportHealthSummary
queryHourMeter⊕ reportHourMeter
queryReminder⊕ reportReminder
queryReminderSummary⊕ reportReminderSummary

Page 30

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

See Section 5.1 for an explanation of the inputs and outputs marked with a ⊕.

5.1.1.1 reportHealthDetails

Description: This operation is used to report the most recent health detail status for each system or subsystem.

Namespace: UMAA::SO::HealthReporter

Topic: HealthDetailsReport

Data Type: HealthDetailsReportType

Table 7: HealthDetailsReportType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

healthDetails sequence<HealthDetailsStat
usType>

A list of health detail of the service

resourceID* NumericGUID Unique Identifier of the resource

5.1.1.2 reportHealthReporterCommand

Description: This operation is used to report the current built-in-test command.

Namespace: UMAA::SO::HealthReporter

Topic: HealthReporterCommandReport

Data Type: HealthReporterCommandReportType

Table 8: HealthReporterCommandReportType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

builtInTest BuiltInTestStatusType_All builtInTest is used to run a built-in test to an unmanned
vehicle and its subsystems.

5.1.1.3 reportHealthReporterCommandStatus

Description: This operation is used to report the status of the built-in-test command.

Namespace: UMAA::SO::HealthReporter

Topic: HealthReporterCommandStatus

Data Type: HealthReporterCommandStatusType

Page 31

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Table 9: HealthReporterCommandStatusType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAACommandStatus

5.1.1.4 reportHealthSummary

Description: This operation is used to report the health report summary of the system or subsystem.

Namespace: UMAA::SO::HealthSummaryStatus

Topic: HealthSummaryReport

Data Type: HealthSummaryReportType

Table 10: HealthSummaryReportType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

resourceIDs sequence<NumericGUID> A list of unique identifier of the resources.
severities sequence<ErrorConditionEn

umType>
The error list reporting for each subsystem. A zero-valued
severity code indicates normal operation of the system or
subsystem; otherwise the severity code reported for a sys-
tem or subsystem will be the highest severity code.

5.1.1.5 reportHourMeter

Description: This operation is used to report the cumulative operational (powered-on) minutes of the system or sub-
system.

Namespace: UMAA::SO::HealthReporter

Topic: HourMeterStatus

Data Type: HourMeterStatusType

Table 11: HourMeterStatusType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

elapsedMin Duration_Hours The operational (powered-on) minutes for each system or
subsystem

Page 32

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

5.1.1.6 reportReminder

Description: This operation is used to report the status and configuration for the maintenance reminder.

Namespace: UMAA::SO::HealthReporter

Topic: ReminderStatus

Data Type: ReminderStatusType

Table 12: ReminderStatusType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

descriptor StringShortDescription A human-readable string describing the maintenance re-
minder

elapsedTime Duration_Hours Current elapsed subsystem powered-on time since last re-
set

reminderConfig BooleanEnumType Indicate whether the associated maintenance reminder is
not configured (set to 1)

reminderID NumericGUID Unique identifier for each maintenance reminder
reminderStatus BooleanEnumType Status indication whether the reminder is expired (set to

1) or not expired (set to 0)
serviceInterval Duration_Hours A reminder timer in minutes

5.1.1.7 reportReminderSummary

Description: This operation is used to report a simple status for each maintenance reminder.

Namespace: UMAA::SO::HealthReporter

Topic: ReminderSummaryStatus

Data Type: ReminderSummaryStatusType

Table 13: ReminderSummaryStatusType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

reminderExpireds sequence<BooleanEnumTyp
e>

Status indication whether the reminder is expired (set to
1) or not expired (set to 0)

reminderIDs sequence<NumericGUID> A list of unique identifiers for maintenance reminder

Page 33

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

5.1.1.8 reportResetReminderCommand

Description: This operation is used to current reminder reset command.

Namespace: UMAA::SO::HealthReporter

Topic: ResetReminderCommandReport

Data Type: ResetReminderCommandReportType

Table 14: ResetReminderCommandReportType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

reminderID NumericGUID An unique identifier of the reminder

5.1.1.9 reportResetReminderCommandStatus

Description: This operation is used to report the status of the reminder reset command.

Namespace: UMAA::SO::HealthReporter

Topic: ResetReminderCommandStatus

Data Type: ResetReminderCommandStatusType

Table 15: ResetReminderCommandStatusType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAACommandStatus

5.1.1.10 setHealthReporter

Description: This operation is used to command built-in-test for the system or subsystem.

Namespace: UMAA::SO::HealthReporter

Topic: HealthReporterCommand

Data Type: HealthReporterCommandType

Page 34

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Table 16: HealthReporterCommandType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAACommand

builtInTest BuiltInTestStatusType_All builtInTest is used to run a built-in test to an unmanned
vehicle and its subsystems.

5.1.1.11 setResetReminder

Description: This operation is used to reset the maintenance reminder.

Namespace: UMAA::SO::HealthReporter

Topic: ResetReminderCommand

Data Type: ResetReminderCommandType

Table 17: ResetReminderCommandType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAACommand

reminderID NumericGUID An unique identifier of the reminder

5.1.2 HealthSummaryControl

The purpose of this service is to provide a health status summary report.

Table 18: HealthSummaryControl Operations

Service Requests (Inputs) Service Responses (Outputs)
setHealthSummary reportHealthSummaryCommandStatus
cancelHealthSummaryCommand⊕ reportHealthSummaryCancelCommandStatus⊕

See Section 5.1 for an explanation of the inputs and outputs marked with a ⊕.

5.1.2.1 reportHealthSummaryCommandStatus

Description: This operation is used to report the status of the system and/or subsystem health report summary re-
quest.

Namespace: UMAA::SO::HealthSummaryControl

Topic: HealthSummaryCommandStatus

Data Type: HealthSummaryCommandStatusType

Page 35

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Table 19: HealthSummaryCommandStatusType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAACommandStatus

5.1.2.2 setHealthSummary

Description: This operation is used to request an update to the systems and/or subsystems health report summary.

Namespace: UMAA::SO::HealthSummaryControl

Topic: HealthSummaryCommand

Data Type: HealthSummaryCommandType

Table 20: HealthSummaryCommandType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAACommand

5.1.3 HealthSummaryStatus

The purpose of this service is to gather health status and fault of the systems and/or subsystems.

Table 21: HealthSummaryStatus Operations

Service Requests (Inputs) Service Responses (Outputs)
queryHealthSummary⊕ reportHealthSummary

See Section 5.1 for an explanation of the inputs and outputs marked with a ⊕.

5.1.3.1 reportHealthSummary

Description: This operation is used to report the health report summary of the system or subsystem.

Namespace: UMAA::SO::HealthSummaryStatus

Topic: HealthSummaryReport

Data Type: HealthSummaryReportType

Page 36

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Table 22: HealthSummaryReportType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

resourceIDs sequence<NumericGUID> A list of unique identifier of the resources.
severities sequence<ErrorConditionEn

umType>
The error list reporting for each subsystem. A zero-valued
severity code indicates normal operation of the system or
subsystem; otherwise the severity code reported for a sys-
tem or subsystem will be the highest severity code.

5.1.4 ResourceAllocation

This service provides the interfaces necessary for attempting exclusive control of a resource, setting the priority ordering of
resource consumers, and retrieving the current configuration and control information for a resource.

Resource Definition
For UMAA, a resource is defined as a logical grouping of UMAA service providers whose execution is mutually exclusive
within the group. For example, when executing a GlobalWaypointControl command, a FinControl command cannot execute
at the same time. A resource is identified by its resourceId, and the relationship of service providers to their resource is
reported by the resource configuration message.

Resource Consumer Definition
Resource consumers are simply consumers of UMAA services whose access is controlled by ResourceAllocation. A resource
consumer is identified by the source attribute in the header of the intended command message. This identifier is used by
ResourceAllocation when determining the consumer’s priority (set using the priority command).

Configuring Resource Consumer Priority
Priority is configured at the resource level, based on resourceId. Priority is modelled using a sequence of resource consumer
identifiers (see above), ordered by priority (low to high). Priority may be changed during runtime using the ResourceAllocation
priority command, or it may be treated as static configuration. In either case, the priority ordering for all resource consumers
in the system must be configured before any resource allocation can take place. Similarly, if a resource consumer attempts
a resource allocation and its identifier is not present in the priority configuration, the request must be rejected. Priority
is primarily used internally by the ResourceAllocation service, but is published to the DDS bus for persistence. Note
that service providers do not rely on this report data to determine whether a command can execute; rather, they use the
ResourceAllocation control report to make this determination.

Additions to Flow Control - Resource Consumer
Implementing ResourceAllocation adds additional steps to the flow control for UMAA commands. Before sending a command
to a service provider, the consumer must first command ResourceAllocation to attempt to allocate the resource for control.
The consumer may only proceed with its service command only if it receives a ResourceAllocation command status of
EXECUTING, indicating that it now has control of the resource. This process is detailed below:

Page 37

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Figure 24: Sequence Diagram of Resource Consumer Requesting Control of a Resource

Additionally, resource consumers can set a duration when attempting control of a resource. If a duration is provided, the
consumer must continue to ask for control within the timeout period so control allocation is not lost. This enables robust
recovery for software failures and recovery.

Additions to Flow Control - Service Provider
Service providers must subscribe to the ResourceAllocation report. When a service provider receives a command, it uses
this report to determine whether the consumer has control of the resource by checking the source of the incoming command
message against the consumer currently in control. If the identifiers do not match, or the end time of the control session has
elapsed, then the request must be rejected. This process is detailed below:

Page 38

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Figure 25: Sequence Diagram of Service Provider Verifying a Command using ResourceAllocation

Additions to Flow Control - Nested Service Provider
The ResourceAllocation command flow control has an additional step for nested services. A nested service provider is
commanded by other service providers (and potentially by service consumers as well). For example, in the case where a
GlobalWaypoint service implementation can achieve its functionality by sending a series of GlobalVector commands, the
GlobalVector service provider is a nested service. When a nested service provider receives a command, it checks the configu-
ration report to determine if the command was sent from another service in the same resource (using the command’s source
header field). If it was, the command can continue as normal, since the commanding service would have already followed
the flow control above. If the command is received directly from the resource consumer originating the command, then the
nested service must perform additional verification that the consumer has control of the resource. This process is detailed
below:

Page 39

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Figure 26: Sequence Diagram of Nested Service Provider Verifying a Command using ResourceAllocation

Ensuring Strong Data Consistency
To avoid report data race conditions, the ResourceAllocation service implementation must take additional steps to ensure
strong consistency of ResourceAllocationReport data. Before allowing control of a resource, the ResourceAllocation service
must ensure that all subscribers of ResourceAllocationReport have received the most recent sample. This means that service
providers will have the data they need to verify the service consumer’s command before it is sent. This consistency can be
achieved in a number of ways, such as

• Using standard DDS capabilities by configuring the ResourceAllocation report DataWriter
to be reliable and using wait_for_acknowledgements()

• Using implementation-specific DDS extensions

• Implementing multiple ResourceAllocation services and using a combination of flow control and other methods above
to communicate across a proxy (see examples online)

Avoiding Pitfalls
The ResourceAllocation service exists to deconflict requests coming from multiple service consumers, which would otherwise
cause a fight over a particular resource. There is no mechanism in place to prevent a single consumer who has gained control
of a resource to issue concurrent commands to multiple service providers within the resource. Doing so is bad engineering
practice and should be avoided to ensure command determinism.

Table 23: ResourceAllocation Operations

Service Requests (Inputs) Service Responses (Outputs)
setResourceAllocation reportResourceAllocationCommandStatus
queryResourceAllocationCommand⊕ reportResourceAllocationCommand
cancelResourceAllocationCommand⊕ reportResourceAllocationCancelCommandStatus⊕

Page 40

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Service Requests (Inputs) Service Responses (Outputs)
queryResourceAllocation⊕ reportResourceAllocation
setResourceAllocationPriority reportResourceAllocationPriorityCommandStatus
queryResourceAllocationPriorityCommand⊕ reportResourceAllocationPriorityCommand
cancelResourceAllocationPriorityCommand⊕ reportResourceAllocationPriorityCancelCommandStatus⊕
queryResourceAllocationPriority⊕ reportResourceAllocationPriority
queryResourceAllocationConfig⊕ reportResourceAllocationConfig

See Section 5.1 for an explanation of the inputs and outputs marked with a ⊕.

5.1.4.1 reportResourceAllocation

Description: This operation is used to report the current resources and what consumer currently owns each resource.

Namespace: UMAA::SO::ResourceAllocation

Topic: ResourceAllocationReport

Data Type: ResourceAllocationReportType

Table 24: ResourceAllocationReportType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

controlInfo→controlInfoSetI
D

LargeSet<ResourceAllocatio
nControlInfo>

A list of the control information for every re-
source defined by ResourceAllocation. This at-
tribute is implemented as a large set, see this se
ction for an explanation. The associated topic is
UMAA::SO::ResourceAllocation::ResourceAllocationReport_-
ControlinfoSet.

5.1.4.2 reportResourceAllocationCommand

Description: This operation is used to report the current command.

Namespace: UMAA::SO::ResourceAllocation

Topic: ResourceAllocationCommandReport

Data Type: ResourceAllocationCommandReportType

Table 25: ResourceAllocationCommandReportType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

Page 41

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Attribute Name Attribute Type Attribute Description
duration† Duration_Seconds Specifies the end of the valid time period for the control

session. Once the control session ends, the resource will
become available for other requesters to control. If this
field is empty, then the duration is assumed to be infinite.

resourceId* NumericGUID The identifier of the resource to attempt control of

5.1.4.3 reportResourceAllocationCommandStatus

Description: This operation is used to report the status of the current resource allocation command

Namespace: UMAA::SO::ResourceAllocation

Topic: ResourceAllocationCommandStatus

Data Type: ResourceAllocationCommandStatusType

Table 26: ResourceAllocationCommandStatusType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAACommandStatus

5.1.4.4 reportResourceAllocationConfig

Description: This operation is used to report all service provider identifiers that are sharing a single resource.

Namespace: UMAA::SO::ResourceAllocation

Topic: ResourceAllocationConfigReport

Data Type: ResourceAllocationConfigReportType

Table 27: ResourceAllocationConfigReportType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

resources→resourcesSetID LargeSet<ResourceAllocatio
nDefinitionType>

The configuration of each resource. This at-
tribute is implemented as a large set, see this se
ction for an explanation. The associated topic is
UMAA::SO::ResourceAllocation::ResourceAllocationConfigReport_-
ResourcesSet.

5.1.4.5 reportResourceAllocationPriority

Page 42

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Description: This operation is used to report the current priority ordering of resource consumers.

Namespace: UMAA::SO::ResourceAllocation

Topic: ResourceAllocationPriorityReport

Data Type: ResourceAllocationPriorityReportType

Table 28: ResourceAllocationPriorityReportType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

priorities→prioritiesSetID LargeSet<ResourceAllocatio
nPriorityInfo>

The priority ordering of resource consumers for each
resource defined by ResourceAllocation. This at-
tribute is implemented as a large set, see this se
ction for an explanation. The associated topic is
UMAA::SO::ResourceAllocation::ResourceAllocationPriorityReport_-
PrioritiesSet.

5.1.4.6 reportResourceAllocationPriorityCommand

Description: This operation is used to report the current command.

Namespace: UMAA::SO::ResourceAllocation

Topic: ResourceAllocationPriorityCommandReport

Data Type: ResourceAllocationPriorityCommandReportType

Table 29: ResourceAllocationPriorityCommandReportType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

priorities sequence<NumericGUID> The priority-ordered (low to high) sequence of resource
consumer source identifiers

resourceId* NumericGUID The identifier of the resource the priority is being set for.

5.1.4.7 reportResourceAllocationPriorityCommandStatus

Description: This operation is used to report the status of the current priority command.

Namespace: UMAA::SO::ResourceAllocation

Topic: ResourceAllocationPriorityCommandStatus

Data Type: ResourceAllocationPriorityCommandStatusType

Page 43

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Table 30: ResourceAllocationPriorityCommandStatusType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAACommandStatus

5.1.4.8 setResourceAllocation

Description: This operation is used to set the current resource allocation command. The source attribute in the header of
this command is used to identify the consumer that is requesting the resource to be allocated

Namespace: UMAA::SO::ResourceAllocation

Topic: ResourceAllocationCommand

Data Type: ResourceAllocationCommandType

Table 31: ResourceAllocationCommandType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAACommand

duration† Duration_Seconds Specifies the end of the valid time period for the control
session. Once the control session ends, the resource will
become available for other requesters to control. If this
field is empty, then the duration is assumed to be infinite.

resourceId* NumericGUID The identifier of the resource to attempt control of

5.1.4.9 setResourceAllocationPriority

Description: This operation is used to set the ordered priority of consumers who will be requesting access. All poten-
tial consumers must be on this list to be enabled to request control allocation.

Namespace: UMAA::SO::ResourceAllocation

Topic: ResourceAllocationPriorityCommand

Data Type: ResourceAllocationPriorityCommandType

Table 32: ResourceAllocationPriorityCommandType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAACommand

priorities sequence<NumericGUID> The priority-ordered (low to high) sequence of resource
consumer source identifiers

resourceId* NumericGUID The identifier of the resource the priority is being set for.

Page 44

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Page 45

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

5.2 Common Data Types
Common data types define DDS types that are referenced throughout the UMAA model. These DDS types are considered
common because they can be re-used as the data type for many attributes defined in service interface topics, interface topics,
and other common data types. These data types are not intended to be directly published to/subscribed as DDS topics.

5.2.1 UCSMDEInterfaceSet

Namespace: UMAA::UCSMDEInterfaceSet

Description: Defines the common UCSMDE Interface Set Message Fields.

Table 33: UCSMDEInterfaceSet Structure Definition

Attribute Name Attribute Type Attribute Description
timeStamp DateTime The time at which the data was derived.

5.2.2 UMAACommand

Namespace: UMAA::UMAACommand

Description: Defines the common UMAA Command Message Fields.

Table 34: UMAACommand Structure Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UCSMDEInterfaceSet

source* NumericGUID The unique identifier of the originating source of the com-
mand interface.

destination* NumericGUID The unique identifier of the destination of the command
interface.

sessionID* NumericGUID The identifier of the session.

5.2.3 UMAAStatus

Namespace: UMAA::UMAAStatus

Description: Defines the common UMAA Status Message Fields.

Table 35: UMAAStatus Structure Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UCSMDEInterfaceSet

source* NumericGUID The unique identifier of the originating source of the status
interface.

Page 46

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

5.2.4 UMAACommandStatusBase

Namespace: UMAA::UMAACommandStatusBase

Description: Defines the common UMAA Command Status Base Message Fields.

Table 36: UMAACommandStatusBase Structure Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UCSMDEInterfaceSet

source* NumericGUID The unique identifier of the originating source of the com-
mand status interface.

sessionID* NumericGUID The identifier of the session.

5.2.5 UMAACommandStatus

Namespace: UMAA::UMAACommandStatus

Description: Defines the common UMAA Command Status Message Fields.

Table 37: UMAACommandStatus Structure Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAACommandStatusBase

commandStatus CommandStatusEnumType The status of the command
commandStatusReason CommandStatusReasonEnu

mType
The reason for the status of the command

logMessage StringLongDescription Human-readable description related to response. Systems
should not parse or use any information from this for pro-
cessing purposes.

5.2.6 DateTime

Namespace: UMAA::Measurement::DateTime

Description: Describes an absolute time. Conforms with POSIX time standard (IEEE Std 1003.1-2017) epoch reference
point of January 1st, 1970 00:00:00 UTC.

Table 38: DateTime Structure Definition

Attribute Name Attribute Type Attribute Description
seconds DateTimeSeconds The number of seconds offset from the standard POSIX

(IEEE Std 1003.1-2017) epoch reference point of January
1st, 1970 00:00:00 UTC.

nanoseconds DateTimeNanoSeconds The number of nanoseconds elapsed within the current
DateTimeSecond

Page 47

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

5.2.7 BuiltInTestStatusType_All

Namespace: UMAA::Common::Measurement::BuiltInTestStatusType_All

Description: Realizes BuiltInTestStatusType: the Selector for the BuiltInTestStatusEnumType.

Table 39: BuiltInTestStatusType_All Structure Definition

Attribute Name Attribute Type Attribute Description
domain sequence<BuiltInTestStatus

EnumType>
An EnumerationSet which defines the allowable values for
the Selector.

setPoint BuiltInTestStatusEnumTyp
e

An EnumerationSet which specifies the desired value of
the Selector.

value BuiltInTestStatusEnumTyp
e

An EnumerationSet which specifies the actual value of the
Selector.

5.2.8 HealthDetailsStatusType

Namespace: UMAA::SO::HealthReporter::HealthDetailsStatusType

Description: This structure is used to report the health details status of the unmanned vehicle and/or its subsystems.

Table 40: HealthDetailsStatusType Structure Definition

Attribute Name Attribute Type Attribute Description
code ErrorCodeEnumType The types of system or subsystems associated with the

error report
descriptor StringShortDescription A description of the system or subsystem reporting the

error
logTime DateTime Log time when the error occurs
resourceURN StringShortDescription An uniform resource name of the service
severity ErrorConditionEnumType The types of error is reporting
detailID* NumericGUID Unique Identifier of the health detail of the resource

5.2.9 Quaternion

Namespace: BasicTypes::Quaternion

Description: Defines a four-element vector that can be used to encode any rotation in a 3D coordinate system.

Table 41: Quaternion Structure Definition

Attribute Name Attribute Type Attribute Description
a double Real number a.
b double Real number b.
c double Real number c.
d double Real number d.

Page 48

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

5.2.10 ResourceAllocationControlInfo

Namespace: UMAA::SO::ResourceAllocation::ResourceAllocationControlInfo

Description: This structure is used to define attributes related to the controller of a resource

Table 42: ResourceAllocationControlInfo Structure Definition

Attribute Name Attribute Type Attribute Description
controlSession† ResourceAllocationControlS

ession
Information on the consumer currently controlling the re-
source. If empty, this resource is not currently allocated
for control.

resourceId* NumericGUID The identifier of the resource being controlled.

5.2.11 ResourceAllocationControlSession

Namespace: UMAA::SO::ResourceAllocation::ResourceAllocationControlSession

Description: This structure is used to define attributes related to the current controller of a resource

Table 43: ResourceAllocationControlSession Structure Definition

Attribute Name Attribute Type Attribute Description
controllingConsumer NumericGUID The source identifier of the resource consumer in control

of the resource
endTime† DateTime The absolute end time of the consumer’s control. After this

time is reached, the resource is available to be controlled
by another process. If this field is empty, then the duration
is assumed to be infinite.

5.2.12 ResourceAllocationDefinitionType

Namespace: UMAA::SO::ResourceAllocation::ResourceAllocationDefinitionType

Description: This structure is used to define the attributes associated with a resource - that is, a collection of related
service providers whose functionality cannot be executed simultaneously.

Table 44: ResourceAllocationDefinitionType Structure Definition

Attribute Name Attribute Type Attribute Description
relatedSources sequence<NumericGUID> The source identifiers of each service that is logically part

of this resource. For instance, this resource could represent
driving-related services at large. This field would then
contain the source of each driving-related service provider
active in the system.

resourceId* NumericGUID The identifier of the resource.

Page 49

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

5.2.13 ResourceAllocationPriorityInfo

Namespace: UMAA::SO::ResourceAllocation::ResourceAllocationPriorityInfo

Description: This structure is used to define the configuration of resource control priority for a particular resource

Table 45: ResourceAllocationPriorityInfo Structure Definition

Attribute Name Attribute Type Attribute Description
priorities sequence<NumericGUID> The priority-ordered (low to high) sequence of client iden-

tifiers
resourceId* NumericGUID The identifier of the resource being controlled.

Page 50

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

5.3 Enumerations
Enumerations are used extensively throughout UMAA. This section lists the values associated with each enumeration defined
in UCS-UMAA.

5.3.1 BuiltInTestStatusEnumType

Namespace: UMAA::Common::Enumeration::BuiltInTestStatusEnumType

Description: BuiltInTestStatusEnumTypeLDM is a Realization of BuiltInTestStatusEnumType which is a mutually exclu-
sive set of values that defines the state of a Built-In Test.

Table 46: BuiltInTestStatusEnumType Enumeration

Enumeration Value Description
BIT_SUSPENDED The built-in test (BIT) has been suspended.
BIT_FAILED The built-in test (BIT) has failed.
BIT_PASSED The built-in test (BIT) has passed.
RUNNING_BIT The built-in test (BIT) is current executing.
OFF_ABORT The built-in test (BIT) is off or has been aborted.

5.3.2 CommandStatusReasonEnumType

Namespace: UMAA::Common::MaritimeEnumeration::CommandStatusReasonEnumType

Description: Defines a mutually exclusive set of reasons why a command status state transition has occurred.

Table 47: CommandStatusReasonEnumType Enumeration

Enumeration Value Description
CANCELED Indicates a transition to the CANCELED state when the command is canceled

successfully.
VALIDATION_FAILED Indicates a transition to the FAILED state when the command contains missing,

out-of-bounds, or otherwise invalid parameters.
OBJECTIVE_FAILED Indicates a transition to the FAILED state when the commanded resource is

unable to achieve the command’s objective due to external factors.
SERVICE_FAILED Indicates a transition to the FAILED state when the commanded resource is

unable to achieve the command’s objective due to processing failure.
RESOURCE_FAILED Indicates a transition to the FAILED state when the commanded resource is

unable to achieve the command’s objective due to resource or platform failure.
RESOURCE_REJECTED Indicates a transition to the FAILED state when the commanded resource re-

jects the command for some reason.
INTERRUPTED Indicates a transition to the FAILED state when the command has been inter-

rupted by a higher priority process.
TIMEOUT Indicates a transition to the FAILED state when the command is not acknowl-

edged within some defined time bound.
SUCCEEDED Indicates the conditions to proceed to this state have been met and a normal

state transition has occurred.

Page 51

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

5.3.3 ErrorCodeEnumType

Namespace: UMAA::Common::MaritimeEnumeration::ErrorCodeEnumType

Description: A mutually exclusive set of values that defines the error codes.

Table 48: ErrorCodeEnumType Enumeration

Enumeration Value Description
ACTUATOR Actuator
FILESYS File system
NONE None
POWER Power
PROCESSOR Processor
RAM RAM
ROM ROM
SENSOR Sensor
SOFTWARE Software

5.3.4 ErrorConditionEnumType

Namespace: UMAA::Common::MaritimeEnumeration::ErrorConditionEnumType

Description: A mutually exclusive set of values that defines the error condition.

Table 49: ErrorConditionEnumType Enumeration

Enumeration Value Description
INFO An error condition is reported, but impact on operation and performance is

minimal.
WARN An error condition is reported and expected to have significant impact on com-

ponent or device performance.
ERROR An error condition is reported and expected to seriously compromise use of the

reporting component or device.
FAIL An error condition is reported with severity indicating component or device

failure.
NONE Indicates that no error condition exists.

5.3.5 CommandStatusEnumType

Namespace: UMAA::Common::MaritimeEnumeration::CommandStatusEnumType

Description: Defines a mutually exclusive set of values that defines the states of a command as it progresses towards
completion.

Page 52

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

Table 50: CommandStatusEnumType Enumeration

Enumeration Value Description
FAILED The command has been attempted, but was not successful.
COMPLETED The command has been completed successfully.
ISSUED The command has been issued to the resource (typically a sensor or streaming

device), but processing has not yet commenced.
COMMANDED The command has been placed in the resource’s command queue but has not

yet been accepted.
EXECUTING The command is being performed by the resource and has not yet been com-

pleted.
CANCELED The command was canceled by the requestor before the command completed

successfully.

Page 53

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

5.4 Type Definitions
This section describes the type definitions for UMAA. The table below lists how UMAA defined types are mapped to the
DDS primitive types.

Table 51: Type Definitions

Type Name Primitive Type Range of Values Description

BooleanEnumTyp
e

boolean units=N/A
minInclusive=N/A
maxInclusive=N/A
fractionDigits=N/A
length=N/A

BooleanEnumTypeLDM is a Realiza-
tion of BooleanEnumType which is a
mutually exclusive set of values that
defines the truth values of logical al-
gebra.

DateTimeNanosec
onds

long units=Nanoseconds
minInclusive=0
maxInclusive=999999999
fractionDigits=0

number of nanoseconds elapsed within
the current second.

DateTimeSeconds longlong units=Seconds
minInclusive=0
maxInclusive=18446744073709
500000
fractionDigits=0

seconds offset from the standard
POSIX (IEEE Std 1003.1-2017) epoch
reference point of January 1st, 1970
00:00:00 UTC.

Duration_Hours double units=Hour
minInclusive=0
maxInclusive=10505
fractionDigits=3

Represents a time duration in hours.

Duration_Seconds double units=Seconds
minInclusive=0
maxInclusive=37817280
fractionDigits=6

Represents a time duration in sec-
onds.

NumericGUID octet[16] units=N/A
minInclusive=0
maxInclusive=(2^128)-1
fractionDigits=0

Represents a 128-bit number accord-
ing to RFC 4122 variant 2

StringLongDescrip
tion

string fractionDigits=N/A
length=4095
maxExclusive=N/A
maxInclusive=N/A
minExclusive=N/A
minInclusive=N/A
units=N/A

Represents a long format description.

StringShortDescri
ption

string fractionDigits=N/A
length=1023
maxExclusive=N/A
maxInclusive=N/A
minExclusive=N/A
minInclusive=N/A
units=N/A

Represents a short format description.

Page 54

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

A Appendices

A.1 Acronyms
Note: This acronym list is included in every ICD and covers the complete UMAA specification. Not every acronym appears
in every ICD.

ADD Architecture Design Description
AGL Above Sea Level
ASF Above Sea Floor
BSL Below Sea Level
BWL Beam at Waterline
C2 Command and Control
CMD Command
CO Comms Operations
CPA Closest Point of Approach
CTD Conductivity, Temperature and Depth
DDS Data Distribution Service
EO Engineering Operations
FB Feedback
GUID Globally Unique Identifier
HM&E Hull, Mechanical, & Electrical
ICD Interface Control Document
ID Identifier
IDL Interface Definition Language Specification
IMO International Maritime Organization
INU Inertial Navigation Unit
LDM Logical Data Model
LOA Length Over All
LRC Long Range Cruise
LWL Length at Waterline
MDE Maritime Domain Extensions
MEC Maximum Endurance Cruise
MM Mission Management
MMSI Maritime Mobile Service Identity
MO Maneuver Operations
MRC Maximum Range Cruise
MSL Mean Sea Level
OMG Object Management Group
PIM Platform Independent Model
PMC Primary Mission Control
PNT Precision Navigation and Timing
PO Processing Operations
PSM Platform Specific Model
RMS Root-Mean-Square
RPM Revolutions per minute
RTPS Real Time Publish Subscribe
RTSP Real Time Streaming Protocol

Page 55

Support Operations (SO) ICD UMAA ICD 3.0.1 f2fa426

SA Situational Awareness
SEM Sensor and Effector Management
SO Support Operations
SoaML Service-oriented architecture Modeling Language
STP Standard Temperature and Pressure
UCS Unmanned Systems Control Segment
UMAA Unmanned Maritime Autonomy Architecture
UML Unified Modeling Language
UMS Unmanned Maritime System
UMV Unmanned Maritime Vehicle
UxS Unmanned System
WGS84 Global Coordinate System
WMO World Meteorological Organization

Page 56

	Scope
	Identification
	Overview
	Document Organization

	Referenced Documents
	Introduction to Data Model, Services, and Interfaces
	Data Model
	Definitions
	Data Distribution Service (DDSTM)
	Naming Conventions
	Namespace Conventions
	Cybersecurity
	GUID algorithm
	Large Sets

	Flow Control
	Command / Response
	High-Level Flow
	Command Startup Sequence
	Service Provider Startup Sequence
	Service Consumer Startup Sequence

	Command Execution Sequences
	Command Start Sequence
	Command Execution
	Command Execution Success
	Command Execution Failure
	Command Canceled

	Command Cleanup
	Command Shutdown Sequence
	Service Provider Shutdown Sequence
	Service Consumer Shutdown Sequence

	Request / Reply
	Request/Reply without Query Data
	Service Provider Startup Sequence
	Service Consumer Startup Sequence
	Service Provider Shutdown
	Service Consumer Shutdown

	Request/Reply with Query Data

	Support Operations (SO) Services and Interfaces
	Services and Interfaces
	HealthReporter
	reportHealthDetails
	reportHealthReporterCommand
	reportHealthReporterCommandStatus
	reportHealthSummary
	reportHourMeter
	reportReminder
	reportReminderSummary
	reportResetReminderCommand
	reportResetReminderCommandStatus
	setHealthReporter
	setResetReminder

	HealthSummaryControl
	reportHealthSummaryCommandStatus
	setHealthSummary

	HealthSummaryStatus
	reportHealthSummary

	ResourceAllocation
	reportResourceAllocation
	reportResourceAllocationCommand
	reportResourceAllocationCommandStatus
	reportResourceAllocationConfig
	reportResourceAllocationPriority
	reportResourceAllocationPriorityCommand
	reportResourceAllocationPriorityCommandStatus
	setResourceAllocation
	setResourceAllocationPriority

	Common Data Types
	UCSMDEInterfaceSet
	UMAACommand
	UMAAStatus
	UMAACommandStatusBase
	UMAACommandStatus
	DateTime
	BuiltInTestStatusType_All
	HealthDetailsStatusType
	Quaternion
	ResourceAllocationControlInfo
	ResourceAllocationControlSession
	ResourceAllocationDefinitionType
	ResourceAllocationPriorityInfo

	Enumerations
	BuiltInTestStatusEnumType
	CommandStatusReasonEnumType
	ErrorCodeEnumType
	ErrorConditionEnumType
	CommandStatusEnumType

	Type Definitions

	Appendices
	Acronyms

		2021-05-05T11:56:24-0400
	Rothgeb.Mark.E.ORC3011008580.ID

		2021-05-10T14:54:11-0400
	ANDERSON.JEREMIAH.P.1254266481

		2021-06-03T17:19:13-0400
	SMALL.PETER.D.1048778646

