
Unmanned Maritime Autonomy Architecture (UMAA)
Support Operations (SO)

Interface Control Document (ICD)
(UMAA-SPEC-SOICD)

Version 6.0

6 June 2024

DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Page 1

Contents

1 Scope 5
1.1 Identification . 5
1.2 Overview . 5
1.3 Document Organization . 7

2 Referenced Documents 8

3 Introduction to Data Model, Services, and Interfaces 9
3.1 Data Model . 9
3.2 Definitions . 9
3.3 Data Distribution Service (DDSTM) . 9
3.4 Naming Conventions . 10
3.5 Namespace Conventions . 11
3.6 Cybersecurity . 12
3.7 GUID algorithm . 12
3.8 Large Collections . 12

3.8.1 Necessary QoS . 12
3.8.2 Creating Large Collections . 12
3.8.3 Updating Large Collections . 14
3.8.4 Removing an element from Large Collections . 17
3.8.5 Specifying an Empty Large Collection . 18
3.8.6 Large Set Types . 18
3.8.7 Large List Types . 19

3.9 Generalizations and Specializations . 20
3.9.1 Creating a generalization/specialization . 20
3.9.2 Updating a generalization/specialization . 21
3.9.3 Removing a generalization/specialization . 22

4 Flow Control 24
4.1 Command / Response . 24

4.1.1 High-Level Flow . 26
4.1.2 Command Startup Sequence . 27

4.1.2.1 Service Provider Startup Sequence . 27
4.1.2.2 Service Consumer Startup Sequence . 28

4.1.3 Command Execution Sequences . 29
4.1.4 Command Start Sequence . 29

4.1.4.1 Command Execution . 30
4.1.4.2 Updating a Command . 31
4.1.4.3 Command Execution Success . 32
4.1.4.4 Command Execution Failure . 33
4.1.4.5 Command Canceled . 34

4.1.5 Command Cleanup . 35
4.1.6 Command Shutdown Sequence . 36

4.1.6.1 Service Provider Shutdown Sequence . 36
4.1.6.2 Service Consumer Shutdown Sequence . 37

4.2 Request / Reply . 38
4.2.1 Request/Reply without Query Data . 38

4.2.1.1 Service Provider Startup Sequence . 39
4.2.1.2 Service Consumer Startup Sequence . 40
4.2.1.3 Service Provider Shutdown . 40
4.2.1.4 Service Consumer Shutdown . 40

4.2.2 Request/Reply with Query Data . 41

5 Support Operations (SO) Services and Interfaces 42
5.1 Services and Interfaces . 42

Page 2

5.1.1 HealthReport . 42
5.1.1.1 reportHealth . 42

5.1.2 LogReport . 43
5.1.2.1 reportLogReport . 43

5.2 Common Data Types . 45
5.2.1 UCSMDEInterfaceSet . 45
5.2.2 UMAACommand . 45
5.2.3 UMAAStatus . 45
5.2.4 UMAACommandStatusBase . 46
5.2.5 UMAACommandStatus . 46
5.2.6 DateTime . 46
5.2.7 IdentifierType . 47

5.3 Enumerations . 48
5.3.1 CommandStatusReasonEnumType . 48
5.3.2 ErrorCodeEnumType . 48
5.3.3 ErrorConditionEnumType . 49
5.3.4 LogLevelEnumType . 49
5.3.5 CommandStatusEnumType . 49

5.4 Type Definitions . 51

A Appendices 52
A.1 Glossary . 52
A.2 Acronyms . 52

List of Figures
1 UMAA Functional Organization. 5
2 UMAA Services and Interfaces Example. 6
3 Services and Interfaces Exposed on the UMAA Data Bus. 9
4 Sequence Diagram for initialization of a Large Collection with 3 elements. 13
5 Sequence Diagram for initialization of a Large Collection with 3 elements. 14
6 Sequence Diagram for update of Large Collection. 15
7 Sequence Diagram for update of an element of a Large Collection multiple times. 16
8 Sequence Diagram for delete of element from Large Collection. 17
9 Sequence Diagram for initialization of an empty Large Collection. 18
10 Generalization/Specialization UML diagram. 20
11 Sequence diagram for creating a generalization/specialization. 21
12 Sequence diagram for updating a generalization/specialization. 22
13 Sequence diagram for removing a generalization/specialization. 23
14 State transitions of the commandStatus as commands are processed. 25
15 Valid commandStatusReason values for each commandStatus state transition. Entries marked with a (—)

indicate that the state transition is invalid. 25
16 Sequence Diagram for the High-Level Description of a Command Execution. 26
17 Sequence Diagram for Command Startup. 27
18 Sequence Diagram for Command Startup for Service Providers. 28
19 Sequence Diagram for Command Startup for Service Consumers. 29
20 Sequence Diagram for the Start of a Command Execution. 30
21 Beginning Sequence Diagram for a Command Execution. 31
22 Sequence Diagram for Command Update. 32
23 Sequence Diagram for a Command That Completes Successfully. 33
24 Sequence Diagram for a Command That Fails due to Resource Failure. 33
25 Sequence Diagram for a Command That Times Out Before Completing. 34
26 Sequence Diagram for a Command That is Canceled by the Service Consumer Before the Service Provider can

Complete It. 35
27 Sequence Diagram Showing Cleanup of the Bus When a Command Has Been Completed and the Service

Consumer No Longer Wishes to Maintain the Commanded State. 36

Page 3

28 Sequence Diagram for Command Shutdown. 36
29 Sequence Diagram for Command Shutdown for Service Providers. 37
30 Sequence Diagram for Command Shutdown for Service Consumers. 38
31 Sequence Diagram for a Request/Reply for Report Data That Does Not Require any Specific Query Data. . . 39
32 Sequence Diagram for Initialization of a Service Provider to Provide FunctionReportTypes. 40
33 Sequence Diagram for Initialization of a Service Consumer to Request FunctionReportTypes. 40
34 Sequence Diagram for Shutdown of a Service Provider. 40
35 Sequence Diagram for Shutdown of a Service Consumer. 41

List of Tables
1 Standards Documents . 8
2 Government Documents . 8
3 Service Requests and Associated Responses . 10
4 LargeSetMetadata Structure Definition . 18
5 Example FooReportTypeItemsSetElement Structure Definition . 19
6 LargeListMetadata Structure Definition . 19
7 Example FooReportTypeItemsListElement Structure Definition . 19
8 HealthReport Operations . 42
9 HealthReportType Message Definition . 43
10 LogReport Operations . 43
11 LogReportType Message Definition . 43
12 UCSMDEInterfaceSet Structure Definition . 45
13 UMAACommand Structure Definition . 45
14 UMAAStatus Structure Definition . 45
15 UMAACommandStatusBase Structure Definition . 46
16 UMAACommandStatus Structure Definition . 46
17 DateTime Structure Definition . 46
18 IdentifierType Structure Definition . 47
19 CommandStatusReasonEnumType Enumeration . 48
20 ErrorCodeEnumType Enumeration . 48
21 ErrorConditionEnumType Enumeration . 49
22 LogLevelEnumType Enumeration . 49
23 CommandStatusEnumType Enumeration . 50
24 Type Definitions . 51

Page 4

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

1 Scope

1.1 Identification
This document defines a set of services and interfaces as part of the Unmanned Maritime Autonomy Architecture (UMAA).
The services and corresponding interfaces covered in this ICD encompass the functionality to provide support operations for
an Unmanned Maritime Vehicle (UMV) (surface or undersea). As such, it provides services used across functional boundaries
of UMAA ICD’s such as logging, supporting startup and shutdown, providing emissions services, and resource control. This
document is generated automatically from data models that define its services and interfaces as part of the Unmanned
Systems (UxS) Control Segment (UCS) Architecture as extended by UMAA to provide autonomy services for unmanned
vehicles.

To put each ICD in context of the UMAA Architecture Design Description (ADD), the UMAA functional decomposition
mapping to UMAA ICDs is shown in Figure 1.

Figure 1: UMAA Functional Organization.

1.2 Overview
The fundamental purpose of UMAA is to promote the development of common, modular, and scalable software for unmanned
vehicles that is independent of a particular autonomy implementation. Unmanned Maritime Systems (UMSs) consist of
Command and Control (C2), one or more unmanned vehicles, and support equipment and software (e.g. recovery system,
Post Mission Analysis applications). The scope of UMAA is focused on the autonomy that resides on-board the unmanned
vehicle. This includes the autonomy for all classes of unmanned vehicles and must support varying levels of communication
in mission (i.e., constant, intermittent, or none) with external systems. To enable modular development and upgrade of the
functional capabilities of the on-board autonomy, UMAA defines eight high-level functions. These core functions include:
Communications Operations, Engineering Operations, Maneuver Operations, Mission Management, Processing Operations,
Sensor and Effector Operations, Situational Awareness, and Support Operations. In each of these areas, it is anticipated that
new capabilities will be required to satisfy evolving Navy missions over time. UMAA seeks to define standard interfaces for
these functions so that individual programs can leverage capabilities developed to these standard interfaces across programs
that meet the standard interface specifications. Individual programs may group services and interfaces into components in

Page 5

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

different ways to serve their particular vehicle’s needs. However, the entire interface defined by UMAA will be required as
defined in the ICDs for all services that are included in a component. This requirement is what enables autonomy software
to be ported between heterogeneous UMAA-compliant vehicles with their disparate vendor-defined vehicle control interfaces
without recoding to a vehicle-specific interface.

Support Operations provides capabilities for services that are shared across all of the other functional areas within UMAA.
This support includes the ancillary infrastructure services and interfaces required to operate an unmanned vehicle. Standard
interfaces are defined for startup and shutdown, logging of time-stamped event and attribute data, operational mode control
(e.g. operational, simulation, maintenance, training), and resource control (i.e. managing which client is in control of a
component).

Unlike the primary concerns of an unmanned vehicle system, such as propulsion control and sensor data processing, the
support operations are not typically seen in an external view of the system. Standardization of these services provides a
consistent way to manage internal modes and control hierarchies across platforms and programs.

Figure 2: UMAA Services and Interfaces Example.

Page 6

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

1.3 Document Organization
This interface control document is organized as follows:

Section 1 – Scope: A brief purview of this document

Section 2 – Referenced Documents: A listing of associated of government and non-government documents and standards

Section 3 – Introduction to Data Model, Services, and Interfaces: A description of the common data model across all
services and interfaces

Section 4 – Flow Control: A description of different flow control patterns used throughout UMAA

Section 5 – Support Operations (SO) Services and Interfaces: A description of specific services and interfaces for this
ICD

Page 7

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

2 Referenced Documents
The documents in the following table were used in the creation of the UMAA interface design documents. Not all references
may be applicable to this particular document.

Table 1: Standards Documents

Title Release Date
A Universally Unique IDentifier (UUID) URN Namespace July 2005
Data Distribution Service for Real-Time Systems Specification, Version 1.4 March 2015
Data Distribution Service Interoperability Wire Protocol (DDSI-RTPS), Version 2.3 April 2019
Object Management Group Interface Definition Language Specification (IDL) March 2018
Extensible and Dynamic Topic Types for DDS, Version 1.3 February 2020
UAS Control Segment (UCS) Architecture, Architecture Description, Version 2.4 27 March 2015
UCS Architecture, Conformance Specification, Version 2.2 27 September 2014
UCS-SPEC-MODEL v3.4 Enterprise Architect Model 27 March 2015
UCS Architecture, Architecture Technical Governance, Version 2.5 27 March 2015
System Modeling Language Specification, Version 1.5 May 2017
Unified Modeling Language Specification, Version 2.5.1 December 2017
Interface Definition Language (IDL), Version 4.2 March 2018
U.S. Department Of Homeland Security, United States Coast Guard
"Navigation Rules International-Inland" COMDTINST M16672.2D

March 1999

IEEE 1003.1-2017 - IEEE Standard for Information Technology–Portable Operating Sys-
tem Interface (POSIX(R)) Base Specifications, Issue 7

December 2017

Guard, U. C. (2018). Navigation Rules and Regulations Handbook: Interna-
tional—Inland. Simon and Schuster.

June 2018

Department of Defense Interface Standard: Joint Military Symbology (MIL-STD-2525D
Appendix A)

10 June 2014

DOD Dictionary of Military and Associated Terms August 2018

Table 2: Government Documents

Title Release Date
Unmanned Maritime Autonomy Architecture (UMAA) Architecture Design Description
(ADD), Version 1.0

January 2019

Manual for the Submission of Oceanographic Data Collected by Unmanned Undersea
Vehicles (UUVs)

October 2018

Page 8

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

3 Introduction to Data Model, Services, and Interfaces

3.1 Data Model
A common data model is at the heart of UMAA. The common data model describes the entities that represent system state
data, the attributes of those entities and relationships between those entities. This is a "data at rest" view of system-level
information. It also contains data classes that define types of messages that will be produced by components, or a "data in
motion" view of system-level information.

The common data model and coordinated service interfaces are described in a Unified Modeling Language (UMLTM) modeling
tool and are represented as UMLTM class diagrams. Interface definition source code for messages/topics and other interface
definition products and documentation will be automatically generated from the common data model so that they are
consistent with the data model and to ensure that delivered software matches its interface specification.

The data model is maintained as a Multi-Domain Extension (MDE) to the UCS Architecture and will be maintained under
configuration control by the UMAA Board as UCSMDE and will be incrementally integrated into the core UCS standard.
Section 5 content is automatically generated from this data model, as are other automated products such as IDL that are
used for automated code generation.

3.2 Definitions
UMAA ICDs follow the UCS terminology definitions found in the UCS Architecture Description v2.4. The normative
(required) implementation to satisfy the requirements of a UMAA ICD is to provide service and interface specification
compliance. Components may group services and required interfaces in any manner so long as every service meets its
interface specifications. Figure 3 shows a particular grouping of services into components. The interfaces are represented
by the blue and green lines and may equate to one or more independent input and output interfaces for each service. The
implementation of the service into software components is left up to the individual system development. Given this context,
section 5 correspondingly defines services with their interfaces and not components.

Figure 3: Services and Interfaces Exposed on the UMAA Data Bus.

Services may use other services within this ICD, or in other UMAA defined ICDs, to provide their capability. Additionally,
components for acquisition and development may span multiple ICDs. An example of this would be a commercial radar that
provides both status and control of the unit via the radar’s software Application Programming Interface (API).

3.3 Data Distribution Service (DDSTM)
The data bus supporting autonomy messaging (as seen in Figure 3) is implemented via DDSTM. DDS is a middleware
protocol and API standard for data-centric connectivity from the Object Management Group (OMG). It integrates the
components of a system together, providing low-latency data connectivity, extreme reliability, and a scalable architecture. In
a distributed system, middleware is the software layer that lies between the operating system and applications. It enables
the various system components to more easily communicate and share data. It simplifies the development of distributed
systems by letting software developers focus on the specific purpose of their applications rather than the mechanics of passing
information between applications and systems. The DDS specification is fully described in free reference material on the
OMG website and there are both open source and commercially available implementations.

Page 9

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

3.4 Naming Conventions
UMAA services are modeled within the UCS Architecture under the Multi-Domain Extension (MDE). The UCS Architecture
uses SoaML concepts of participant, serviceInterface, service port, and request port to describe the interfaces that make up
a service and show how the service is used. Each service defines the capability it provides as well as required interfaces.
Each interface consists of an operation that accepts a single message (A SoaML MessageType). In SoaML, a MessageType is
defined as a unit of information exchanged between participant Request and Service ports via ServiceInterfaces. Instances of a
MessageType are passed as parameters in ServiceInterface operations. (Reference: UCS Architecture, Architecture Technical
Governance)

To promote commonality across service definitions, a common way of naming services and their sets of operations and
messages has been adopted for defining services within UCS-MDE. The convention uses the Service Base Name <SBN> and
an optional Function Name [FN] to derive all service names and their associated operations and messages. As this is meant
to be a guide, services might not include all of the defined operations and messages and their names might not follow the
convention where a more appropriate name adds clarity.

Furthermore, services in UMAA are not required to be defined as indicated in Table 3 when all parts of the service capabilities
are required for the service to be meaningful (such as ResourceAllocation).

Additionally, note that for UMAA not all operations defined in UCS-MDE result in a message being published to the DDS
bus, e.g., since DDS uses publish/subscribe, most query operations result in a subscription to a topic and do not actually
publish the associated request message. In the case of cancel commands, there is no associated implementation of the
cancel<SBN>[FN]CommandStatus as it is just the intrinsic response of the DDS dispose function; so, it is essentially a
NOOP (no operation) in implementation. The conventions used to define UCS-MDE services are as follows:

Service Name
<SBN>[FN]Config
<SBN>[FN]Control
<SBN>[FN]Specs
<SBN>[FN]Status OR Report

where the SBN should be descriptive of the task or information provided by the service. Note that the FN is optional and only
included if needed to clarify the function of the service. The suffixes Status and Report are interchangeable. If a "Report" is
a more appropriate description of the service, it can be used in lieu of "Status".

Table 3: Service Requests and Associated Responses

Service Requests (Inputs) Service Responses (Outputs)

Config
set<SBN>[FN]Config report<SBN>[FN]ConfigCommandStatus
query<SBN>[FN]ConfigAck report<SBN>[FN]ConfigAck
query<SBN>[FN]Config report<SBN>[FN]Config
cancel<SBN>[FN]Config report<SBN>[FN]CancelConfigCommandStatus
query<SBN>[FN]ConfigExecutionStatus report<SBN>[FN]ConfigExecutionStatus

Control
set<SBN>[FN] report<SBN>[FN]CommandStatus
query<SBN>[FN]CommandAck report<SBN>[FN]CommandAck
cancel<SBN>[FN]Command report<SBN>[FN]CancelCommandStatus
query<SBN>[FN]ExecutionStatus report<SBN>[FN]ExecutionStatus

Specs query<SBN>[FN]Specs report<SBN>[FN]Specs
Status OR Report query<SBN>[FN] report<SBN>[FN]

Service Requests (operation:message)

Page 10

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

set<SBN>[FN]Config:<SBN>[FN]ConfigCommandType
query<SBN>[FN]Config:<SBN>[FN]ConfigRequestType1

set<SBN>[FN]:<SBN>[FN]CommandType
query<SBN>[FN]CommandAck:<SBN>[FN]CommandAckRequestType1

cancel<SBN>[FN]Command:<SBN>[FN]CancelCommandType1

cancel<SBN>[FN]Config:<SBN>[FN]CancelConfigType1

query<SBN>[FN]ExecutionStatus:<SBN>[FN]ExecutionStatusRequestType1

query<SBN>[FN]ConfigExecutionStatus:<SBN>[FN]ConfigExecutionStatusRequestType1

query<SBN>[FN]ConfigAck:<SBN>[FN]ConfigAckRequestType1

query<SBN>[FN]Specs:<SBN>[FN]SpecsRequestType1

query<SBN>[FN]:<SBN>[FN]RequestType 1 2

Service Responses (operation:message)
report<SBN>[FN]ConfigCommandStatus:<SBN>[FN]ConfigCommandStatusType
report<SBN>[FN]Config:<SBN>[FN]ConfigReportType
report<SBN>[FN]ConfigAck:<SBN>[FN]ConfigAckReportType
report<SBN>[FN]CommandStatus:<SBN>[FN]CommandStatusType
report<SBN>[FN]CommandAck:<SBN>[FN]CommandAckReportType
report<SBN>[FN]CancelCommandStatus:<SBN>[FN]CancelCommandStatusType1

report<SBN>[FN]CancelConfigCommandStatus:<SBN>[FN]CancelConfigCommandStatusType1

report<SBN>[FN]ExecutionStatus:<SBN>[FN]ExecutionStatusReportType
report<SBN>[FN]ConfigExecutionStatus:<SBN>[FN]ConfigExecutionStatusReportType
report<SBN>[FN]Specs:<SBN>[FN]SpecsReportType
report<SBN>[FN]:<SBN>[FN]ReportType

where,

• Config (Configuration) Command/Report – This is the setup of a resource for operation of a particular task. Attributes
may be static or variable. Examples include: maximum RPM allowed, operational sonar frequency range allowed, and
maximum allowable radio transmit power.

• Command Status – This is the current state of a particular command (either control or configuration).

• Command – This is the ability to influence or direct the behavior of a resource during operation of a particular task.
Attributes are variable. Examples include a vehicle’s speed, engine RPM, antenna raising/lowering, and controlling a
light or gong.

• Command Ack (Acknowledgement) Report – This is the command currently being executed.

• Cancel – This is the ability to cancel a particular command that has been issued.

• Execution Status Report – This is the status related to executing a particular command. Examples associated with a
waypoint command include cross track error, time to achieve, and distance remaining.

• Specs (Specifications) Report – Provides a detailed description of a resource and/or its capabilities and constraints.
Attributes are static. Examples include: maximum RPM of a motor, minimum frequency of a passive sonar sensor,
length of the unmanned vehicle, and cycle time of a radar.

• Report – This is the current information being provided by a resource. Examples include vehicle speed, rudder angle,
current waypoint, and contact bearing.

3.5 Namespace Conventions
Each UMAA service and the messages under the service can be accessed through their appropriate UMAA namespace. The
namespace reflects the mapping of a specific service to its parent ICD, and the parent ICD’s mapping to the overall UMAA
Design Description. For example:

Access the Primitive Driver Control service under Maneuver Operations:
1These message types are required for UCS model rules of construction, but are not implemented as messages in the UMAA specification.
2At this time, there are no Requests in the specification. This will be the message format when Requests have been added.

Page 11

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

UMAA::MO::PrimitiveDriverControl
Access the ContactReport Service under Situational Awareness:

UMAA::SA::ContactReport

The UMAA model uses common data types that are re-used through the model to define service interface topics, interface
topics, and other common data topics. These data types are not intended to be directly utilized but, for reference, they can
be accessed in the same manner:

Access the common UMAA Status Message Fields:
UMAA::UMAAStatus

Access the common UMAA GeoPosition2D (i.e., latitude and longitude) structure:
UMAA::Common::Measurement::GeoPosition2D

3.6 Cybersecurity
The UMAA standard addressed in this ICD is independent from defining specific measures to achieve Cybersecurity compli-
ance. This UMAA ICD does not preclude the incorporation of security measures, nor does it imply or guarantee any level
of Cybersecurity within a system. Cybersecurity compliance will be performed on a program-specific basis and compliance
testing is outside the scope of UMAA.

3.7 GUID algorithm
The UMAA standard utilizes the Globally Unique IDentifier (GUID), conforming to the variant defined in RFC 4122 (variant
value of 2). Generators of GUIDs may generate GUIDs of any valid, RFC 4122-defined version that is appropriate for their
specific use case and requirements. (Reference: A Universally Unique IDentifier (UUID) URN Namespace)

3.8 Large Collections
The UMAA standard defines Large Collections, which are collections of decoupled but related data. Large Collections provide
the ability to update one or more elements of the collection without republishing the entire collection to the DDS bus. This
avoids two problems related to using an unbounded sequence type in a DDS message: 1) resource consumption growing as
the collection is appended to or updated, and 2) DDS implementation-specific limitations on unbounded sequences. There
are two implementations of a Large Collection: the Large Set (unordered) and the Large List (ordered).

In both Large Collection implementations, there are two important abstractions: the collection metadata and collection
element type. Because Large Collections are specific to the UMAA PSM, the type definitions for the collection metadata and
collection element are not part of MDE, and the IDL definitions of these types are generated separately. A particular UMAA
message that has a Large Collection attribute will reference the metadata type (LargeSetMetadata or LargeListMetadata).
The collection element type is defined under the same namespace as the message that uses it, and follows the naming
pattern <parent message name><attribute name><collection type>Element. Each element of the collection is published as
a separate message on the DDS bus, and can be tracked back to their related collection using the setID or listID. Users can
also trace an element in a set to the source attribute (a NumericGUID) of the Service Provider that generated the report
with this set using the collection metadata.

3.8.1 Necessary QoS

To achieve the Large Collection consistency in the update process described below, ordering of samples on the collection
element type topic is necessary. Therefore, publishers and subscribers to the collection element type topic must use the
PRESENTATION QoS policy with an access_scope of DDS_TOPIC_PRESENTATION_QOS and ordered_access.

Note that Large Collection Metadata and Elements are sent on separate DDS topics. DDS QoS does not guarantee ordering
across topics. For this reason, implementations must be able to handle cases where elements arrive before or after the
associated metadata. Memory must be allocated to await the proper metadata and associated elements.

3.8.2 Creating Large Collections

To create a large collection, a series of element messages and a metadata message must be sent from one DDS participant
(the sender) to another (the receiver). The messages should be buffered on the receiving side until a synchronization point is

Page 12

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

reached which indicates an atomic update. That is, when both a metadata message and an element message corresponding
by list ID, timestamp, and last element ID have been received, yield a complete collection. Figure 4 shows the sequence of
exchanges to establish a collection with 3 elements.

Figure 4: Sequence Diagram for initialization of a Large Collection with 3 elements.

The same collection could be established where the element data arrives after the metadata, creating the same list as depicted
in figure 5.

Page 13

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 5: Sequence Diagram for initialization of a Large Collection with 3 elements.

3.8.3 Updating Large Collections

When elements of the collection are updated, the metadata must be updated as well to signal a change in the set. The
updateElementID is updated to match the elementID of the element whose reception signals the end of the atomic update
of the collection. Because of the requirement of an ordered topic described above, this will be the element that is updated
last chronologically. The metadata updateElementTimestamp must be updated to the timestamp of the same element that
signals the end of the update.

The set can be updated as a batch (multiple elements in a single "update cycle," as determined by the provider). This allows for
a coarse synchronization: data elements that do not match the metadata updateElementID and updateElementTimestamp
can be assumed to be part of an in-progress update cycle. Consumers can choose to immediately act on those data individually
or wait until the matching element is received to signal that the complete update cycle has finished and consider the set as a
whole. Note that the coarseness of synchronization is service-dependent: in some cases an intermediate view of a collection
update may be logically incorrect to act upon.

Figure 6 shows the sequence of exchanges to update a collection of 3 elements and add a 4th element.

Page 14

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 6: Sequence Diagram for update of Large Collection.

Figure 7 shows the sequence of exchanges to update an element of a collection multiple times.

Page 15

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 7: Sequence Diagram for update of an element of a Large Collection multiple times.

Page 16

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

3.8.4 Removing an element from Large Collections

To remove an element from a collection, dispose of the element on the element topic and re-publish the metadata. Multiple
deletes and inserts can happen for a single metadata update. In the case where the final element of the collection is deleted,
the updateElementTimestamp should be unset in the metadata.

Figure 8 shows the sequence of exchanges to delete an element from a Large Collection.

Figure 8: Sequence Diagram for delete of element from Large Collection.

For Large Lists, it may be necessary to update the nextElementID references during delete operations to ensure that the list
is still valid. This would cause multiple element messages to be sent along with updated metadata.

Page 17

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

3.8.5 Specifying an Empty Large Collection

A particular Large Collection can be empty during initial creation. This is indicated by publishing metadata with a size of
zero and an updateElementID set to the Nil UUID. As specified in section 4.1.7 of the referenced document "A Universally
Unique IDentifier (UUID) URN Namespace", this is a "special form of UUID that is specified to have all 128 bits set to zero".

Figure 9 shows the sequence of exchanges to establish an initially empty Large Collection.

Figure 9: Sequence Diagram for initialization of an empty Large Collection.

3.8.6 Large Set Types

The following details the LargeSetMetadata structure:

Table 4: LargeSetMetadata Structure Definition

Attribute Name Attribute Type Attribute Description
setID NumericGUID Identifies the Large Set instance this metadata relates to.
updateElementID NumericGUID This field references the element ID of the set element

whose reception signals the end of an atomic update to
this set. This elementID must be used in conjunction with
the updateElementTimestamp below to fully identify when
the atomic update has completed and the set is stable.

updateElementTimestamp† DateTime This field identifies the elementTimestamp of the element,
referenced above by updateElementID, that signals the
end of an atomic update to this set. This field will be
empty in the event that the element update results from a
DDS dispose.

size LargeCollectionSize Indicates the number of elements associated with this set
after the atomic update is complete.

An example element type is shown below, where a FooReportType message has a Large Set attribute called "items" whose
type is BarType

Page 18

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Table 5: Example FooReportTypeItemsSetElement Structure Definition

Attribute Name Attribute Type Attribute Description
element BarType The value of the set element.
setID* NumericGUID Identifies the Large Set instance this element relates to.
elementID* NumericGUID Uniquely identifies this element within the set and across

all large collection elements that currently exist on the
DDS bus.

elementTimestamp DateTime The timestamp of this element.

3.8.7 Large List Types

The following details the LargeListMetadata structure:

Table 6: LargeListMetadata Structure Definition

Attribute Name Attribute Type Attribute Description
listID NumericGUID Identifies the Large List instance this metadata relates to.
updateElementID NumericGUID This field references the element ID of the list element

whose reception signals the end of an atomic update to
this list. This elementID must be used in conjunction with
the updateElementTimestamp below to fully identify when
the atomic update has completed and the list is stable.

updateElementTimestamp† DateTime This field identifies the elementTimestamp of the element,
referenced above by updateElementID, that signals the
end of an atomic update to this list. This field will be
empty in the event that the element update results from a
DDS dispose.

startingElementID NumericGUID This field identifies the list element, tying to its elementID,
that is sequentially first in the list. This is provided for
convenience when iterating through the linked list using
the nextElementID field.

size LargeCollectionSize Indicates the number of elements associated with this set
after the atomic update is complete.

An example element type is shown below, where a FooReportType message has a Large List attribute called "items" whose
type is BarType

Table 7: Example FooReportTypeItemsListElement Structure Definition

Attribute Name Attribute Type Attribute Description
element BarType The value of the list element.
listID* NumericGUID Identifies the Large List instance this element relates to.
elementID* NumericGUID Uniquely identifies this element within the list and across

all large collection elements that currently exist on the
DDS bus.

elementTimestamp DateTime The timestamp of this element.

Page 19

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Attribute Name Attribute Type Attribute Description
nextElementID† NumericGUID This field references to the elementID of the element that

logically follows this element in the linked list. This is
empty if this element is sequentially last.

3.9 Generalizations and Specializations
The UMAA standard makes use of generalization/specialization relationships when defining data types. The generaliza-
tion/specialization relationship is one where a generalization data structure is defined to contain attributes that are common
across some entity and specialization data structures are defined to contain attributes that are specific to a particular type
of that entity. This relationship can be modeled as inheritance in UML as shown below.

Figure 10: Generalization/Specialization UML diagram.

When the data type of an attribute within a message is a generalization, it is defined to be that generalization plus the data
type of one of its specializations. In order to support this relationship, the generalization data structure and its specializa-
tion data structure are published to separate topics along with additional metadata linking the two topics. Specifically, the
generalization data structure includes: specializationTopic, specializationID, and specializationTimestamp; and the special-
ization data structure includes: specializationID and specializationTimestamp. The specializationTopic specifies the topic
name of the particular specialization, and the specializationID and specializationTimestamp must be equivalent in each topic,
respectively, in order to establish the generalization/specialization relationship.

3.9.1 Creating a generalization/specialization

To create a generalization/specialization, both the GeneralizationType and SpecializationType topics must be sent from
one DDS participant (the sender) to another (the receiver). The topics should be buffered on the receiving side until a
synchronization point is reached that indicates an atomic update.

Page 20

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 11: Sequence diagram for creating a generalization/specialization.

3.9.2 Updating a generalization/specialization

An update to a generalization/specialization can occur when there is a change in either data structure. In order for the update
to be complete, the specializationTimestamp must be updated in both the GeneralizationType and the SpecializationType,
and again they must be equal. Note that if a generalization/specialization exists within a large set or large list that their
respective metadata must also be updated as defined in Section 3.8.

Page 21

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 12: Sequence diagram for updating a generalization/specialization.

3.9.3 Removing a generalization/specialization

To remove a generalization/specialization, both topics must be disposed. Again, note that if a generalization/specialization
exists within a large set or large list that their respective metadata must also be updated as defined in Section 3.8.

Page 22

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 13: Sequence diagram for removing a generalization/specialization.

Page 23

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

4 Flow Control

4.1 Command / Response
This section defines the flow of control for command/response over the DDS bus. A command/response controls a specific
service. While the exact names and processes will depend on the specific service and command being executed, all com-
mand/responses in UMAA follow a similar pattern. A notional "Function" command FunctionCommand is used in the following
examples. As will be described in subsequent paragraphs, DDS publish/subscribe methods are used in implementations to
issue commands and responses.

To direct a FunctionCommand at a specific Service Provider, UMAA includes a destination GUID in all commands. A Ser-
vice Provider is required to respond to all FunctionCommands where the destination is the same as the Service Provider’s
ID. The Service Consumer will also create a sessionID for the command when commanded. The sessionID is used to
track the command execution as a key into other command-related messages. The sessionID must be unique across all
FunctionCommand instances that are active (i.e. currently on the DDS bus), otherwise the Service Provider will consider
the FunctionCommand to be a command update (see Section 4.1.4.2). Once a FunctionCommand is removed from the DDS
bus as part of the Command Cleanup process (see Section 4.1.5), its sessionID may be reused for future commands with-
out triggering a command update; therefore it is not necessary for a Service Provider to maintain a complete history of
sessionIDs.

Service Provider and Service Consumer terminology in the following sections is adopted from the OMG Service-oriented
architecture Modeling Language (SoaML).

To initialize, a Service Provider (controllable resource) subscribes to the FunctionCommand DDS topic. At startup or right
before issuing a command, the Service Consumer (controlling resource) subscribes to the FunctionCommandStatus DDS
topic. Optionally, the Service Consumer may also subscribe to the FunctionCommandAckReport to monitor which command
is currently being executed, and the FunctionExecutionStatusReport (if defined for the Function service) that provides
reporting on function-specific data status.

Both Service Providers and Service Consumers are required to recover or clean up any previous persisted commands on the
bus during initialization.

To execute a command, the Service Consumer publishes a FunctionCommandType to the DDS bus. The Service Provider will
be notified and will begin processing the request. During each phase of processing, the Service Provider will provide updates to
the Service Consumer via published updates to a related FunctionCommandStatus topic. Command responses are correlated
to their originating command via the sessionID. If a command with a duplicate sessionID is received, the Service Provider
will regard this as a command update, and follow the flow control detailed in Section 4.1.4.2. Command status updates are
provided in the command responses via the commandStatus field with additional details included in the commandStatusReason
field. The Service Provider will also publish the current executing command to the FunctionCommandAckReport topic. When
defined for the Function service, the Service Provider must also publish the FunctionExecutionStatusReport topic and
update it as appropriate throughout the execution of the command.

The required state transitions for the commandStatus field are shown in Figure 14. Commands may complete normally, or
they may terminate early due to failure (Section 4.1.4.4) or cancellation (Section 4.1.4.5). The state machine for a command
can also be reset to ISSUED via a command update (Section 4.1.4.2). If there is not a self-transition indicated in the diagram,
you cannot republish that state in a message. Every command must transition through the states as defined. For example,
it is a violation to transition from ISSUED to EXECUTING without transitioning through COMMANDED. Even in the case where
there is no logic executing between the ISSUED and EXECUTING states, the Service Provider is required to transition through
COMMANDED. This ensures consistent behavior across different Service Providers, including those that do require the COMMANDED
state.

Page 24

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 14: State transitions of the commandStatus as commands are processed.

As described above, each time a command transitions to a new state, a FunctionCommandStatus message is published
containing the updated commandStatus and a commandStatusReason that indicates why the state transition happened. The
table below shows all valid commandStatusReason values for each commandStatus transition.

Ending State
Starting State ISSUED COMMANDED EXECUTING COMPLETED FAILED CANCELED
Initial State SUCCEEDED — — — — —

ISSUED UPDATED SUCCEEDED — —

VALIDATION_FAILED
RESOURCE_FAILED

INTERRUPTED
TIMEOUT

SERVICE_FAILED

CANCELED

COMMANDED UPDATED — SUCCEEDED —

RESOURCE_REJECTED
INTERRUPTED

TIMEOUT
SERVICE_FAILED

CANCELED

EXECUTING UPDATED — — SUCCEEDED

OBJECTIVE_FAILED
RESOURCE_FAILED

INTERRUPTED
TIMEOUT

SERVICE_FAILED

CANCELED

COMPLETED — — — — — —
FAILED — — — — — —

CANCELED — — — — — —

Figure 15: Valid commandStatusReason values for each commandStatus state transition. Entries marked with a (—)
indicate that the state transition is invalid.

Page 25

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

In the following sections, the sequence diagrams demonstrate different exchanges between a Service Consumer and Service
Provider. Within the diagrams, the dashed arrows represent implementation-specific communications that are outside of
UMAA’s scope. These sequence diagrams are just an example of one possible implementation. Other implementations may
have different communication patterns between the Service Provider and the Resource or be implemented completely within
the Service Provider process itself (no dependency on an external Resource). Likewise, the interactions between the User
and Service Consumer may follow similar or different patterns. However, the UMAA-defined exchanges with the DDS bus
between the Service Consumer and Service Provider must happen in the order shown within the sequence diagrams.

4.1.1 High-Level Flow

The high-level flow of a command sequence is shown in Figure 16 and can be described as follows:

1. The Command Startup Sequence is performed.

2. For each command to be executed:

(a) The Command Start Sequence is performed.

(b) The command is executed (sequence depends on the execution path, i.e., success, failure, or cancel).

(c) The Command Cleanup Sequence is performed.

3. The Command Shutdown Sequence is performed.

The ref blocks will be defined in later sequence diagrams. Note that the duration of the system execution for any particular
FunctionCommandType is defined by the combination of the Service Provider(s) and Service Consumer(s) in the system and
may not be identical to the overall system execution duration. For example, providers may only be available to execute certain
commands during specific mission phases or when certain hardware is in specific configurations. This Command Startup
Sequence is not required to happen during a system startup phase. The only requirement is that it must be completed by
at least one Service Provider and one Service Consumer before any FunctionCommandType commands can be fully executed.
Likewise, the Command Shutdown sequence may occur at any time the FunctionCommandType will no longer be supported.
There is no requirement stating that the Command Shutdown Sequence only be performed during a system shutdown phase.

Figure 16: Sequence Diagram for the High-Level Description of a Command Execution.

Page 26

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

4.1.2 Command Startup Sequence

As part of initialization both the Service Provider and Service Consumer are required to perform a startup sequence. This
startup prepares the Service Provider to execute commands and the Service Consumer to request commands and monitor
the progress of those requested commands.

The Service Provider and Service Consumer can initialize in any order. Commands will not be completely executed until
both have completed their initialization. The sequence diagram is shown in Figure 17.

Figure 17: Sequence Diagram for Command Startup.

4.1.2.1 Service Provider Startup Sequence During startup, the Service Provider is required to register as a publisher
to the FunctionCommandStatus, FunctionCommandAckReport, and (if defined for the Function service) the
FunctionExecutionStatusReport topics.

The Service Provider is also required to subscribe to the FunctionCommand topic to be notified when new commands are
published.

Finally, the Service Provider is required to handle any existing FunctionCommandType commands persisted on the DDS
bus with the Service Provider’s ID. For each command, if the Service Provider can and wishes to recover, it can continue
to execute the command. To obtain the last published state of the command, the Service Provider must subscribe to the
FunctionCommandStatusType. The Service Provider will continue following the normal status update sequence, picking up
from the last status on the bus. If the Service Provider cannot or chooses not to continue processing the command, it must fail
the command by publishing a FunctionCommandStatus with a commandStatus of FAILED and a reason of SERVICE_FAILED.

The Service Provider Startup sequence is shown in Figure 18.

Page 27

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 18: Sequence Diagram for Command Startup for Service Providers.

4.1.2.2 Service Consumer Startup Sequence During startup, the Service Consumer is required to register as a
publisher of the FunctionCommandType.

The Service Consumer is also required to subscribe to the FunctionCommandStatusType to monitor the execution of any
published commands. The Service Consumer can optionally register for the FunctionCommandAckReportType and, if defined
for the Function service, the FunctionExecutionStatusReportType if it desires to track additional status of the execution
of commands.

Finally, the Service Consumer is required to handle any existing FunctionCommandType commands persisted on the DDS bus
with this Service Consumer’s ID. To find existing FunctionCommandTypes on the bus, it must first subscribe to the topic. If
the Service Consumer can and wishes to recover, it can continue to monitor the execution of the command. If the Service
Consumer cannot or chooses not to continue the execution of the command, it must cancel the command via the normal
command cancel method.

The Service Consumer Startup sequence is shown in Figure 19.

Page 28

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 19: Sequence Diagram for Command Startup for Service Consumers.

4.1.3 Command Execution Sequences

Once both the Service Provider and Service Consumer have performed the startup sequence, the system is ready to begin
issuing and executing commands.

4.1.4 Command Start Sequence

The initial start sequence to execute a single new command follows this pattern:

1. The User of the Service Consumer issues a request for a command to be executed.

2. The Service Consumer publishes the FunctionCommandType with a unique session ID, the source ID of the Service
Consumer, and the destination ID of the desired Service Provider.

3. The Service Provider, upon notification of the new FunctionCommandType, publishes a new FunctionCommandStatusType
with (1) the same session ID as the new FunctionCommandType, (2) the status of ISSUED and (3) the reason of SUCCEEDED
to notify the Service Consumer it has received the new command.

The Command Start Sequence for a new command is shown in Figure 20. This pattern will be repeated each time a new
command is requested. Note that the Command Start Sequence differs if the FunctionCommandType has a sessionID that
matches another FunctionCommandType that currently exists on the DDS bus. This is considered a command update and
detailed in Section 4.1.4.2.

Page 29

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

After the Command Start Sequence, the sequence can take different paths depending on the actual execution of the command,
detailed from Section 4.1.4.1 to Section 4.1.4.5, but they do not enumerate all of the possible execution paths. Other paths
(e.g., an objective failing) will follow a similar pattern to other failures; all are required to follow the state diagram shown in
Figure 14 and eventually end with the Command Cleanup Sequence (shown in Figure 27).

Figure 20: Sequence Diagram for the Start of a Command Execution.

4.1.4.1 Command Execution Once a Service Provider starts to process a command, the Command Execution sequence
is:

1. The Service Provider publishes a FunctionCommandAckReportType with matching session ID and parameters as the
FunctionCommandType it is starting to process.

2. The Service Provider performs any validation and negotiation with backing resources as necessary. Once the command
is ready to be executed, the Service Provider publishes a FunctionCommandStatusType with a status COMMANDED and
reason SUCCEEDED to notify the Service Consumer that the command has been validated and commanded to start
execution.

3. Once the command has begun executing, the Service Provider publishes a FunctionCommandStatusType with a status
EXECUTING and reason SUCCEEDED to notify the Service Consumer that the command has been validated and commanded
to start.

4. If the Function has a defined FunctionExecutionStatusReportType, the Service Provider must publish a new instance
with matching session ID as the associated FunctionCommandType. The FunctionExecutionStatusReportType must
be updated by the Service Provider throughout the execution as dictated by the definitions of the command-specific
attributes in the execution status report.

The command execution sequence is shown in Figure 21. This sequence holds until the command completes execution.

Page 30

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 21: Beginning Sequence Diagram for a Command Execution.

The normal successful conclusion of a command being executed in some cases is initiated by the Service Consumer (an endless
GlobalVector command concluded by canceling it) and in other cases is initiated by the Service Provider (a GlobalWaypoint
commanded concluded by reaching the last waypoint). Unless otherwise explicitly stated, it is assumed the Service Provider
will be able to identify the successful conclusion of a command. In the cases where commands are defined to be indeterminate
the Service Consumer must cancel the command when the Service Consumer no longer desires the command to be executed.

4.1.4.2 Updating a Command An updated command is defined as a command with a source ID and session ID identical
to the current command being processed by the Service Provider, but whose timestamp is newer than the current command.
Only a command that is in a non-terminal state may be updated - otherwise, the Service Consumer must follow the normal
command cleanup process and issue a new command with an updated unique session ID. If a command is in a terminal state,
the Service Provider must ignore an update to that command.

When the Service Provider receives an updated command, it is required to take one of two possible actions:

1. If the current command is in a non-terminal state (ISSUED, COMMANDED, or EXECUTING), then the Service Provider
publishes a FunctionCommandStatusType with a status ISSUED and reason UPDATED. The state machine then restarts
and proceeds through the normal command flow detailed in 4.1.4. The Service Provider must consider the updated
command as an entirely new command, resetting any internal state related to the command (e.g. a timer that keeps
track of command timeout).

Page 31

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

2. If the current command is in a terminal state (COMPLETED, CANCELED, or FAILED), then the updated command cannot
be processed, and the Service Provider must publish a FunctionCommandStatusType with a status FAILED and follow
the normal command cleanup process.

The flow control for command update is detailed below:

Figure 22: Sequence Diagram for Command Update.

4.1.4.3 Command Execution Success When the Service Provider determines a command has successfully completed,
it must update the associated FunctionCommandStatusType with as status of COMPLETED and reason of SUCCEEDED. This
signals to the Service Consumer that the command has completed successfully.

The Command Execution Success sequence is shown in Figure 23.

Page 32

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 23: Sequence Diagram for a Command That Completes Successfully.

4.1.4.4 Command Execution Failure The command may fail to complete for any number of reasons including software
errors, hardware failures, or unfavorable environmental conditions. The Service Provider may also reject a command for a
number of reasons including inability to perform the task, malformed or out of range requests, or a command being interrupted
by a higher priority process. In all cases, the Service Provider must publish a FunctionCommandStatusType with an identical
sessionID as the originating FunctionCommandType with a status of FAILED and the reason that reflects the cause of the
failure (VALIDATION_FAILED, SERVICE_FAILED, OBJECTIVE_FAILED, etc).

Figure 24 and Figure 25 provide examples where a command has failed.

In the first example, the backing Resource failed and the Service Provider is unable to communicate with it. In this case,
the Service Provider will report a FunctionCommandStatusType with a status of FAILED and a reason of RESOURCE_FAILED.
This is shown in Figure 24.

Figure 24: Sequence Diagram for a Command That Fails due to Resource Failure.

In the second example, the Resource takes too long to respond, so the Service Provider cancels the request and reports a
FunctionCommandStatusType with a status of FAILED and a reason of TIMEOUT. This is shown in Figure 25.

Page 33

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 25: Sequence Diagram for a Command That Times Out Before Completing.

Other failure conditions will follow a similar pattern: when the failure is recognized, the Service Provider will publish a
FunctionCommandStatusType with a status of FAILED and a reason that reflect the cause of the failure.

4.1.4.5 Command Canceled The Service Consumer may decide to cancel the command before processing is finished.
To signal a desire to cancel a command, the Service Consumer disposes of the existing FunctionCommandType from the
DDS bus before the execution is complete. When notified of the command disposal, and if the Service Provider is able
to cancel the command, it should respond to the Service Consumer with a FunctionCommandStatusType with both the
status and reason as CANCELED. At this point, the DDS bus should dispose of the FunctionCommandStatusType, the
FunctionCommandAckReportType and, (if defined for the Function service) the FunctionExecutionStatusReportType.
This is shown in Figure 26. If the command cannot be canceled, then the Service Provider can continue to update the
command status until the execution is completed. Reporting will include FunctionCommandStatusType with a status
of COMPLETED and a reason of SUCCEEDED. Then, the DDS bus should dispose of the FunctionCommandStatusType, the
FunctionCommandAckReportType, and (if defined for the Function service) the FunctionExecutionStatusReportType.

There is no new, unique, or specific status message response to a cancel command from the Service Provider. The cancel
command status can be inferred through the corresponding FunctionCommandStatusType status and reason updates.

On loss of liveliness of a Service Provider while executing a command, all Service Consumers must cancel (dispose) all
in-process commands with that Service Provider.

On loss of liveliness of a Service Consumer while executing a command, all Service Providers must treat the command as
canceled. This means the service should report the CANCELED status for the command, and then dispose the command status,
ack, and execution status (if one exists).

Page 34

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 26: Sequence Diagram for a Command That is Canceled by the Service Consumer Before the Service Provider can
Complete It.

4.1.5 Command Cleanup

The Service Consumer and Service Provider are responsible for disposing of corresponding data that is published to the DDS
bus when the command is no longer active. With the exception of a canceled command, the signal that a FunctionCommandType
can be disposed is when the FunctionCommandStatusType reports a terminal state (COMPLETED or FAILED)3. In turn, the
signal that a FunctionCommandStatusType, FunctionCommandAckReportType, and (if defined for the Function service) the
FunctionExecutionStatusReportType can be disposed is when the corresponding FunctionCommandType has been disposed.
This is shown in Figure 27.

3While CANCELED is also a terminal state, the CANCELED command cleanup is handled specially as part of the cancelling sequence and, as such,
does not need to be handled here.

Page 35

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 27: Sequence Diagram Showing Cleanup of the Bus When a Command Has Been Completed and the Service
Consumer No Longer Wishes to Maintain the Commanded State.

4.1.6 Command Shutdown Sequence

As part of shutdown, both the Service Provider and Service Consumer are required to perform a shutdown sequence. This
shutdown cleans up resources on the DDS bus and informs the system that the Service Provider and Service Consumer are
no longer available.

The Service Provider and Service Consumer can shut down in any order. The sequence diagram is shown in Figure 28.

Figure 28: Sequence Diagram for Command Shutdown.

4.1.6.1 Service Provider Shutdown Sequence During shutdown, the Service Provider is required to fail any incom-
plete requests and then unregisters as a publisher of the FunctionCommandStatusType, FunctionCommandAckReportType,
and (if defined for the Function service) the FunctionExecutionStatusReportType.

The Service Provider is also required to unsubscribe from the FunctionCommandType.

The Service Provider Shutdown sequence is shown in Figure 29.

Page 36

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 29: Sequence Diagram for Command Shutdown for Service Providers.

4.1.6.2 Service Consumer Shutdown Sequence During shutdown, the Service Consumer is required to cancel any
incomplete requests and then unregister as a publisher of the FunctionCommandType.

The Service Consumer is also required to unsubscribe from the FunctionCommandStatusType, the FunctionCommandAckReportType
if subscribed, and the FunctionExecutionStatusReportType if defined for the Function service and subscribed.

The Service Consumer Shutdown sequence is shown in Figure 30.

Page 37

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 30: Sequence Diagram for Command Shutdown for Service Consumers.

4.2 Request / Reply
This section defines the flow of control for request/reply over the DDS bus. A request/reply is used to obtain data or status
from a specific Service Provider.

A Service Provider is required to reply to all requests it receives. In the case of requests with no query data, this is
accomplished via a DDS subscribe. In the case of a request with associated query data, a message with the query data
must be published by the requester. To direct a request at a specific Service Provider or set of services, UMAA defines a
destination GUID as part of requests.

The sequence diagrams in Sections 31 through 35 demonstrate different exchanges between a Service Consumer and Service
Provider. Within the diagrams, the dashed arrows represent implementation-specific communications that are outside of
UMAA’s scope. Additionally, these sequence diagrams are examples of one possible implementation. Other implementations
may have different communication patterns between the Service Provider and the Resource, or be implemented completely
within the Service Provider process itself (no external Resource). However, in all implementations, UMAA-defined exchanges
with the DDS bus between the Service Consumer and Service Provider must happen in the order shown within the sequence
diagrams.

4.2.1 Request/Reply without Query Data

Figure 31 shows the sequence of exchanges in the case where there is no specific query data (i.e., the service is always just
providing the current data to the bus).

Page 38

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 31: Sequence Diagram for a Request/Reply for Report Data That Does Not Require any Specific Query Data.

4.2.1.1 Service Provider Startup Sequence The Service Provider registers as a publisher of FunctionReportTypes
to be able to respond to requests. The Service Provider must also handle reports that exist on the bus from a previous instan-
tiation, either by providing an immediate update or, if the status is unrecoverable, disposing of the old FunctionReportType.
This is shown in Figure 32.

As FunctionReportType updates are required (either through event-driven changes or periodic updates), the Service Provider
publishes the updated data. The DDS bus will deliver the updates to the Service Consumer.

Page 39

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 32: Sequence Diagram for Initialization of a Service Provider to Provide FunctionReportTypes.

4.2.1.2 Service Consumer Startup Sequence The Service Consumer subscribes to the FunctionReportType to signal
an outstanding request for updates. This is shown in Figure 33.

Figure 33: Sequence Diagram for Initialization of a Service Consumer to Request FunctionReportTypes.

4.2.1.3 Service Provider Shutdown To no longer provide FunctionReportTypes, the Service Provider disposes of the
FunctionReportType and unregisters as a publisher of the data (shown in Figure 34).

Figure 34: Sequence Diagram for Shutdown of a Service Provider.

4.2.1.4 Service Consumer Shutdown To no longer request FunctionReportTypes, the Service Consumer unsubscribes
from FunctionReportType (shown in Figure 35).

Page 40

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Figure 35: Sequence Diagram for Shutdown of a Service Consumer.

4.2.2 Request/Reply with Query Data

Currently, UMAA does not define any request/reply interactions with query data, but it is expected that some will be defined.
When defined, this section will be expanded to describe how they must be used.

Page 41

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

5 Support Operations (SO) Services and Interfaces

5.1 Services and Interfaces
The interfaces in the following subsections describe how each UCS-UMAA topic is defined by listing the name, namespace,
and member attributes. The "name" corresponds with the message name of a given service interface. The "namespace"
defines the scope of the "name" where similar commands are grouped together. The "member attributes" are fields that can
be populated with differing data types, e.g. a generic "depth" attribute could be populated with a double data value. Note
that using a UCS-UMAA "Topic Name" requires using the fully-qualified namespace plus the topic name.

Each interface topic is referenced by a UMAA service and is defined as either an input or output interface.

Attributes ending in one or more asterisk(s) denote the following:
* = Key (annotated with @key in IDL file; vendors may use different notation to indicate a key field)
† = Optional (annotated with @optional in IDL file; vendors may use different notation to indicate an optional field)

Optional fields should be handled as described in the UMAA Compliance Specification.

Commands issued on the DDS bus must be treated as if they are immutable in UMAA and, therefore, if updated (treated
incorrectly as mutable), the resulting service actions are indeterminate and flow control protocols are no longer guaranteed.

Operations without DDS Topics

⊕ = Operations that are handled directly in DDS

query<...> - All query operations are used to retrieve the correlated report message. For UMAA, this operation is accom-
plished through subscribing to the appropriate DDS topic.

cancel<...> - All cancel operations are used to nullify the current command. For UMAA, this operation is accomplished
through the DDS dispose action on the publisher.

report<...>CancelCommandStatus - All cancel reports are included here to show completeness of the MDE model mapping
to UMAA. For UMAA, this operation is not used. Instead, the cancel status is inferred from the associated command status.
If the cancel command is successful, the corresponding command will fail with a command status and reason of CANCELED.
If the corresponding command status reports COMPLETED, then this cancel command has failed.

5.1.1 HealthReport

The purpose of this service is to provide health details, which includes, but is not limited to, the health as determined from
BITs (Built-In-Tests).

Table 8: HealthReport Operations

Service Requests (Inputs) Service Responses (Outputs)
queryHealth⊕ reportHealth

See Section 5.1 for an explanation of the inputs and outputs marked with a ⊕.

5.1.1.1 reportHealth

Description: This operation is used to report the most recent health status for each resource. This service is expected to
report all managed resource/code pairs at all times (including reporting "NONE" severity when "No error condition exists").
Updates are required for each change event and at a configurable rate.

Namespace: UMAA::SO::HealthReport

Topic: HealthReportType

Page 42

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Data Type: HealthReportType

Table 9: HealthReportType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

logTime DateTime Log time when the error occurs.
severity ErrorConditionEnumType The type of error reported.
status† StringLongDescription A detailed, human-readable string which specifies the sta-

tus of the system or subsystem, such as the reason for
failure. Systems should not parse or use any information
from this for processing purposes.

code* ErrorCodeEnumType The types of system or subsystems associated with the
error report.

resourceID* IdentifierType Unique Identifier of the health detail of the resource.

5.1.2 LogReport

The purpose of this service is to provide log messages.

Table 10: LogReport Operations

Service Requests (Inputs) Service Responses (Outputs)
queryLogReport⊕ reportLogReport

See Section 5.1 for an explanation of the inputs and outputs marked with a ⊕.

5.1.2.1 reportLogReport

Description: This operation is used to report an entry on the bus that can be subscribed to and potentially entered
into a system level log. This data is in addition to existing UMAA messages. It is a way of providing more detailed informa-
tion than is normally published on the UMAA bus by the standard messaging.

Namespace: UMAA::SO::LogReport

Topic: LogReportType

Data Type: LogReportType

Table 11: LogReportType Message Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAAStatus

Page 43

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Attribute Name Attribute Type Attribute Description
entry StringLongDescription A human-readable description which specifies the contents

of the log message. Systems should not parse or use any
information from this for processing purposes.

level LogLevelEnumType Specifies the log level of the message.

Page 44

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

5.2 Common Data Types
Common data types define DDS types that are referenced throughout the UMAA model. These DDS types are considered
common because they can be re-used as the data type for many attributes defined in service interface topics, interface topics,
and other common data types. These data types are not intended to be directly published to/subscribed as DDS topics.

5.2.1 UCSMDEInterfaceSet

Namespace: UMAA::UCSMDEInterfaceSet

Description: Defines the common UCSMDE Interface Set Message Fields.

Table 12: UCSMDEInterfaceSet Structure Definition

Attribute Name Attribute Type Attribute Description
timeStamp DateTime The origination time of the data being conveyed in the

message, or as close to the data or command generation
time as is reasonably possible.

5.2.2 UMAACommand

Namespace: UMAA::UMAACommand

Description: Defines the common UMAA Command Message Fields.

Table 13: UMAACommand Structure Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UCSMDEInterfaceSet

source* IdentifierType The unique identifier of the originating source of the com-
mand interface.

destination* IdentifierType The unique identifier of the destination of the command
interface.

sessionID* NumericGUID The unique identifier for the session.

5.2.3 UMAAStatus

Namespace: UMAA::UMAAStatus

Description: Defines the common UMAA Status Message Fields.

Table 14: UMAAStatus Structure Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UCSMDEInterfaceSet

source* IdentifierType The unique identifier of the originating source of the status
interface.

Page 45

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

5.2.4 UMAACommandStatusBase

Namespace: UMAA::UMAACommandStatusBase

Description: Defines the common UMAA Command Status Base Message Fields.

Table 15: UMAACommandStatusBase Structure Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UCSMDEInterfaceSet

source* IdentifierType The unique identifier of the originating source of the com-
mand status interface.

sessionID* NumericGUID The unique identifier for the session.

5.2.5 UMAACommandStatus

Namespace: UMAA::UMAACommandStatus

Description: Defines the common UMAA Command Status Message Fields.

Table 16: UMAACommandStatus Structure Definition

Attribute Name Attribute Type Attribute Description
Additional fields included from UMAA::UMAACommandStatusBase

commandStatus CommandStatusEnumType The status of the command.
commandStatusReason CommandStatusReasonEnu

mType
The reason for the status of the command.

logMessage StringLongDescription Human-readable description related to response. Systems
should not parse or use any information from this for pro-
cessing purposes.

5.2.6 DateTime

Namespace: UMAA::Common::Measurement::DateTime

Description: Describes an absolute time. Conforms with POSIX time standard (IEEE Std 1003.1-2017) epoch reference
point of January 1st, 1970 00:00:00 UTC.

Table 17: DateTime Structure Definition

Attribute Name Attribute Type Attribute Description
seconds DateTimeSeconds The number of seconds offset from the standard POSIX

(IEEE Std 1003.1-2017) epoch reference point of January
1st, 1970 00:00:00 UTC.

nanoseconds DateTimeNanoSeconds The number of nanoseconds elapsed within the current
DateTimeSecond.

Page 46

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

5.2.7 IdentifierType

Namespace: UMAA::Common::IdentifierType

Description: This structure defines a two-level hierarchical identifier, where the parent is defined to be a group or col-
lection of entities.

Table 18: IdentifierType Structure Definition

Attribute Name Attribute Type Attribute Description
id NumericGUID Provides the identifier of an entity.
parentID NumericGUID Provides the identifier of the parent, which is a group or

collection of one or more entities. If the entity has no
parent (it is the root of the tree), this value will be the Nil
UUID.

Page 47

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

5.3 Enumerations
Enumerations are used extensively throughout UMAA. This section lists the values associated with each enumeration defined
in UCS-UMAA.

5.3.1 CommandStatusReasonEnumType

Namespace: UMAA::Common::MaritimeEnumeration::CommandStatusReasonEnumType

Description: Defines a mutually exclusive set of reasons why a command status state transition has occurred.

Table 19: CommandStatusReasonEnumType Enumeration

Enumeration Value Description
CANCELED Indicates a transition to the CANCELED state when the command is canceled

successfully.
INTERRUPTED Indicates a transition to the FAILED state when the command has been inter-

rupted by a higher priority process.
OBJECTIVE_FAILED Indicates a transition to the FAILED state when the commanded resource is

unable to achieve the command’s objective due to external factors.
RESOURCE_FAILED Indicates a transition to the FAILED state when the commanded resource is

unable to achieve the command’s objective due to resource or platform failure.
RESOURCE_REJECTED Indicates a transition to the FAILED state when the commanded resource re-

jects the command for some reason.
SERVICE_FAILED Indicates a transition to the FAILED state when the commanded resource is

unable to achieve the command’s objective due to processing failure.
SUCCEEDED Indicates the conditions to proceed to this state have been met and a normal

state transition has occurred.
TIMEOUT Indicates a transition to the FAILED state when the command is not acknowl-

edged within some defined time bound.
UPDATED Indicates a transition back to the ISSUED state from a non-terminal state when

the command has been updated.
VALIDATION_FAILED Indicates a transition to the FAILED state when the command contains missing,

out-of-bounds, or otherwise invalid parameters.

5.3.2 ErrorCodeEnumType

Namespace: UMAA::Common::MaritimeEnumeration::ErrorCodeEnumType

Description: A mutually exclusive set of values that defines the error codes.

Table 20: ErrorCodeEnumType Enumeration

Enumeration Value Description
ACTUATOR Actuator
FILESYS File system
NONE None
POWER Power
PROCESSOR Processor
RAM RAM

Page 48

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Enumeration Value Description
ROM ROM
SENSOR Sensor
SOFTWARE Software

5.3.3 ErrorConditionEnumType

Namespace: UMAA::Common::MaritimeEnumeration::ErrorConditionEnumType

Description: A mutually exclusive set of values that defines the error condition.

Table 21: ErrorConditionEnumType Enumeration

Enumeration Value Description
ERROR An error condition is reported and expected to seriously compromise use of the

reporting component or device.
FAIL An error condition is reported with severity indicating component or device

failure.
INFO An error condition is reported, but impact on operation and performance is

minimal.
NONE No error condition exists.
WARN An error condition is reported and expected to have significant impact on com-

ponent or device performance.

5.3.4 LogLevelEnumType

Namespace: UMAA::Common::MaritimeEnumeration::LogLevelEnumType

Description: Defines a mutually exclusive set of values that defines the log level.

Table 22: LogLevelEnumType Enumeration

Enumeration Value Description
ERROR An error message level.
INFORMATION An informational message level.
WARNING A warning message level.

5.3.5 CommandStatusEnumType

Namespace: UMAA::Common::MaritimeEnumeration::CommandStatusEnumType

Description: Defines a mutually exclusive set of values that defines the states of a command as it progresses towards
completion.

Page 49

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

Table 23: CommandStatusEnumType Enumeration

Enumeration Value Description
CANCELED The command was canceled by the requestor before the command completed

successfully.
COMMANDED The command has been placed in the resource’s command queue but has not

yet been accepted.
COMPLETED The command has been completed successfully.
EXECUTING The command is being performed by the resource and has not yet been com-

pleted.
FAILED The command has been attempted, but was not successful.
ISSUED The command has been issued to the resource (typically a sensor or streaming

device), but processing has not yet commenced.

Page 50

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

5.4 Type Definitions
This section describes the type definitions for UMAA. The table below lists how UMAA defined types are mapped to the
DDS primitive types.

Table 24: Type Definitions

Type Name Primitive Type Range of Values Description

DateTimeNanosec
onds

long units=Nanoseconds
minInclusive=0
maxInclusive=999999999

The number of nanoseconds elapsed
within the current second.

DateTimeSeconds longlong units=Seconds
minInclusive=-92233720368547
75807
maxInclusive=92233720368547
75807

The seconds offset from the standard
POSIX (IEEE Std 1003.1-2017) epoch
reference point of January 1st, 1970
00:00:00 UTC.

LargeCollectionSiz
e

long maxInclusive=2147483647
minInclusive=0

Specifies the size of a Large Collec-
tion.

NumericGUID octet[16] minInclusive=0
maxInclusive=(2^128)-1

Represents a 128-bit number accord-
ing to RFC 4122 variant 2.

StringLongDescrip
tion

string length=4095 Represents a long format description.

Page 51

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

A Appendices

A.1 Glossary
Note: This glossary aims to define terms that are uncommon, or have a special meaning in the context of UMAA and/or the
DoD. This glossary covers the complete UMAA specification. Not every word defined here appears in every ICD.

Almanac Data (GPS) A navigation message that contains information about the time and status of
the entire satellite constellation.

Coulomb The SI unit of electric charge, equal to the quantity of electricity conveyed in
one second by a current of one ampere.

Ephemeris Data (GPS) A navigation message used to calculate the position of each satellite in orbit.
Glowplug or Glow Plug A heating device used to aid in starting diesel engines.
Interoperability 1) The ability to act together coherently, effectively, and efficiently to achieve

tactical, operational, and strategic objectives. 2) The condition achieved among
communications-electronics systems or items of communications-electronics
equipment when information or services can be exchanged directly and sat-
isfactorily between them and/or their users.

Mean Sea Level The average height of the surface of the sea for all stages of the tide; used as a
reference for elevations.

Middleware A type of computer software that provides services to software applications
beyond those available from the operating system. Middleware makes it easier
for software developers to implement communication and input/output, so they
can focus on the specific purpose of their application.

SoaML The Service oriented architecture Modeling Language (SoaML) specification
that provides a metamodel and a UML profile for the specification and design
of services within a service-oriented architecture. The specification is managed
by the Object Management Group (OMG).

A.2 Acronyms
Note: This acronym list is included in every ICD and covers the complete UMAA specification. Not every acronym appears
in every ICD.

ADD Architecture Design Description
AGL Above Sea Level
ASF Above Sea Floor
BSL Below Sea Level
BWL Beam at Waterline
C2 Command and Control
CMD Command
CO Comms Operations
CPA Closest Point of Approach
CTD Conductivity, Temperature and Depth
DDS Data Distribution Service
DTED Digital Terrain Elevation Data
EGM Earth Gravity Model
EO Engineering Operations
FB Feedback
GUID Globally Unique Identifier
HM&E Hull, Mechanical, & Electrical

Page 52

Support Operations (SO) ICD UMAA ICD 6.0 5afff3b

ICD Interface Control Document
ID Identifier
IDL Interface Definition Language Specification
IMO International Maritime Organization
INU Inertial Navigation Unit
LDM Logical Data Model
LOA Length Over All
LRC Long Range Cruise
LWL Length at Waterline
MDE Maritime Domain Extensions
MEC Maximum Endurance Cruise
MM Mission Management
MMSI Maritime Mobile Service Identity
MO Maneuver Operations
MRC Maximum Range Cruise
MSL Mean Sea Level
OMG Object Management Group
PIM Platform Independent Model
PMC Primary Mission Control
PNT Precision Navigation and Timing
PO Processing Operations
PSM Platform Specific Model
RMS Root-Mean-Square
ROC Risk of Collision
RPM Revolutions per minute
RTPS Real Time Publish Subscribe
RTSP Real Time Streaming Protocol
SA Situational Awareness
SEM Sensor and Effector Management
SO Support Operations
SoaML Service-oriented architecture Modeling Language
STP Standard Temperature and Pressure
UCS Unmanned Systems Control Segment
UMAA Unmanned Maritime Autonomy Architecture
UML Unified Modeling Language
UMS Unmanned Maritime System
UMV Unmanned Maritime Vehicle
UxS Unmanned System
WGS84 Global Coordinate System
WMM World Magnetic Model
WMO World Meteorological Organization

Page 53

	Scope
	Identification
	Overview
	Document Organization

	Referenced Documents
	Introduction to Data Model, Services, and Interfaces
	Data Model
	Definitions
	Data Distribution Service (DDSTM)
	Naming Conventions
	Namespace Conventions
	Cybersecurity
	GUID algorithm
	Large Collections
	Necessary QoS
	Creating Large Collections
	Updating Large Collections
	Removing an element from Large Collections
	Specifying an Empty Large Collection
	Large Set Types
	Large List Types

	Generalizations and Specializations
	Creating a generalization/specialization
	Updating a generalization/specialization
	Removing a generalization/specialization

	Flow Control
	Command / Response
	High-Level Flow
	Command Startup Sequence
	Service Provider Startup Sequence
	Service Consumer Startup Sequence

	Command Execution Sequences
	Command Start Sequence
	Command Execution
	Updating a Command
	Command Execution Success
	Command Execution Failure
	Command Canceled

	Command Cleanup
	Command Shutdown Sequence
	Service Provider Shutdown Sequence
	Service Consumer Shutdown Sequence

	Request / Reply
	Request/Reply without Query Data
	Service Provider Startup Sequence
	Service Consumer Startup Sequence
	Service Provider Shutdown
	Service Consumer Shutdown

	Request/Reply with Query Data

	Support Operations (SO) Services and Interfaces
	Services and Interfaces
	HealthReport
	reportHealth

	LogReport
	reportLogReport

	Common Data Types
	UCSMDEInterfaceSet
	UMAACommand
	UMAAStatus
	UMAACommandStatusBase
	UMAACommandStatus
	DateTime
	IdentifierType

	Enumerations
	CommandStatusReasonEnumType
	ErrorCodeEnumType
	ErrorConditionEnumType
	LogLevelEnumType
	CommandStatusEnumType

	Type Definitions

	Appendices
	Glossary
	Acronyms

